Automotive Selector Guide Making embedded systems better with robust reliable performance # **Contents** | PRODUCTS | Sub category | | |---|--|---| | Analog and Mixed Signal | Power Actuation - Low-side Switches Power Actuation - High-side Switches Power Actuation - H-Bridge and Motors Drivers Power Actuation - H-Bridge Stepper Motors Power Actuation - Pre-Drivers (High-side MOSFET Gate Drivers) Power Actuation - Squib Drivers Power Actuation - Powertrain Control and Engine Management Communication Transceivers - CAN Physical Interface Components Communication Transceivers - LIN, ISO-9141, J-1850 Physical Interface Components Communication Transceiver - Distributed Systems Interface (DSI) Components Millimeter Wave and Radar Anti-Lock Braking System Signal Conditioning System Basis Chip Battery Management - Battery Cell Controller Embedded MCU plus Power - S12 Mixed-Signal Analog MCUs S12 Mixed-Signal Analog MCUs 8-bit Intelligent Distributed Controllers | Page 4 Page 5 Page 7 Page 8 Page 9 Page 9 Page 11 Page 12 Page 12 Page 13 Page 13 Page 13 Page 14 Page 14 Page 14 Page 16 | | Power Management | Power Management - Linear Regulators Power Management - Switching Regulators Automotive Alternator Voltage Regulators | Page 17
Page 18
Page 18 | | Sensors | Pressure Sensors Barometric Absolute Pressure (BAP) and Manifold Absolute Pressure (MAP) Sensors Inertial Sensors Tire Pressure Monitoring Systems | Page 19
Page 19
Page 20
Page 22 | | Access and Remote Control | GPS Downconverter | Page 23 | | Local Interconnect Network (LIN)
Solutions | LIN Software Products LIN Physical Layer Transceivers | Page 24
Page 24 | | PRODUCTS | Sub category | | |----------|--|---| | | 8-bit S08 MCUs S12 and S12X Families S12 MagniV Mixed-signal MCUs 56F8xxx Family Kinetis MCUs based on ARM® Technology MAC57Dxxx 32-bit ARM®-Based MCUs 64-bit S32V MCUs Based on ARM® Technology 32-bit MPC56xx and MPC57xx MCUs Built on Power Architecture® Technology Image Cognition Processors i.MX Applications Processors 32-bit Vybrid Controller Solutions | Page 26 Page 28 Page 31 Page 33 Page 33 Page 34 Page 36 Page 36 Page 41 Page 43 | # Freescale Semiconductor Analog and Mixed-Signal Products The product categories range from Power Actuation and Communication Transceivers to Signal Conditioning and Embedded MCU + Power. Power Actuation covers a broad range of load control and drivers, including motor control. SMARTMOS™—Freescale Semiconductor SMARTMOS technology allows designers to interface high-precision components with the harsh automotive environment. Cost-Effective—Ideally suited for rug automotive applications, SMARTMOS solutions offer a cost-effective blend of analog, digital, and robust power silicon that enables integrated, mixed signal, power control ICs. Functionality—SMARTMOS solutions implement traditional analog functions with smaller die size, and a modular process produces components with the minimum number of process steps for each circuit, minimizing overhead. Benefits—Freescale Semiconductor SMARTMOS technology brings a wide range of benefits to today's designs, including component reductions, power capability, durability, efficiency, precision, high-performance analog, and robustness. Packaging - Freescale device may be offered in EPP and RoHS compliant packages; view the external web for specifics. For additional information, visit: Documentation, Tool, and Product Libraries www.freescale.com www.freescale.com/analog www.freescale.com/powermanagement www.freescale.com/productlongevity www.freescale.com/files/shared/doc/ prod_num_scheme/ANALOGPN.pdf #### Power Actuation — Low-side Switches (Solid State Intelligent Switches) | Product | Description | No of
Output
s | High-side
or Low-
side | Continuous
Current Each
Output (A) | R _{DS(on)} (mΩ)
of Each
Output | Current
Limitation
(A) | Current
Limitation
Standby Max
(μA) | Control ¹ | Status/
Fault
Reporting | Protection Features | Packaging | Status | |-----------|--|----------------------|------------------------------|--|---|------------------------------|--|----------------------|-------------------------------|---|---|---------------------------------| | MC33800 | Engine Control IC, with Eight Low-side Switches,
Two Constant Current Low-side Switches and
Six MOSFET gate pre-drivers | 8 | L | 8 @ 0.35 | 2 @ 700
6 @ 1000 | 2 @ 6.0
6 @ 2.0 | 30 | SPI,
Parallel | SPI | Open Load detect,
Overcurrent protect,
Overvoltage protect,
Shorted Load detect,
Undervoltage protect,
Thermal protect | 54-pin SOICW
Exposed Pad | Production
EVB | | MC33810 | Engine Control Integrated Circuit capable of driving a combination of four Low-side loads and four MOSFETs or IGBT gates | 4 | L | 1.0 | 100 | 6.0 | 30 | SPI,
Parallel | SPI Status
Flags | Shorted Load detect,
Thermal protect | 32-pin SOICW
Exposed Pad | Production
EVB | | MC33812 | Engine control power IC, with 3 Low-side drivers, one pre-driver, +5V pre-regulator, ISO-9141 physical interface and MCU watchdog circuit. | 3 | L | 2 @ 4.0
1 @ 1.5 | 2 @ 200
1 @ 1000 | 2 @ 6.0
1 @ 2.0 | 2 @ 1000
1 @ 20 | Parallel | Parallel | Overcurrent, Outputs Short to Battery, Overtemperature Protect | 32-pin SOICW
Exposed Pad | Production
EVB
Ref.Design | | MC33879 | (1.0 Ω R _{DS(on)}) Configurable Eight Output SPI Controlled Switch | 8 | H/L | 0.35 | 550 | 1.2 | 25 | SPI w/
2 PWM | SPI | Short-circuit, Current
Limit, Temp Sense | 32-pin SOICW
Exposed Pad | Production
EVB | | MC33882 | $(0.8~\Omega~R_{DS(on)}$ Smart Six Output Switch with SPI and Parallel Input Control | 8 | L | 1.0 | 375 | 3.0 | 10 | SPI | SPI | Short-circuit, Current
Limit, Temp Sense | 30-pin HSOP,
32-pin SOICW
Exposed Pad,
32-pin QFN
Exposed Pad | Production | | MC33996 | 16 Output Hardware Low-side Switch with 24-bit Serial Input Control | 16 | L | 0.5 | 450 | 1.0 to 2.5 | 50 | SPI | SPI | Short-circuit, Current
Limit, Temp Sense, Open
Load | 32-pin SOICW | Production
EVB | | MC33999 | 16 Output Hardware Low-side Switch with 24-bit Serial Input Control and 8 Parallel Control | 16 | L | 0.5 | 450 | 1.0 to 2.5 | 50 | SPI.
Parallel | SPI | Short-circuit, Current
Limit, Temp Sense, Open
Load | 54-pin SOICW | Production
EVB | | MM912_634 | Integrated S12 MagniV Based Relay Drivers with LIN | | See S12 | Mixed-Signal A | nalog MCUs | 3 | | | | | | | ^{1.} Products available with SPI Control work with the KITUSBSPIEVME and the KITUSBSPIDGLEVME USB-SPI Interface Boards. ### Power Actuation — High-side Switches (Solid State Intelligent Switches) | Product | Description | No of
Outputs | High-side
or Low-
side | Maximum Current
Each Output (A) | R _{DS(on)} (mΩ)
of Each
Output | Current
Limitation
(A) | Current
Limitation
Standby Max (μA) | Control | Status/Fault
Reporting | Protection Features | Packaging | Status | |------------|--|------------------|------------------------------|------------------------------------|---|------------------------------|---|---------------------|--|---|-----------------------------|-------------------| | MC33879 | (1.0 Ω R _{DS(on)}) Configurable Eight Output SPI Controlled Switch | 8 | H/L | 1.2 | 550 | 1.2 | 25 | SPI w/
2 PWM | SPI | Short-circuit, Current Limit,
Temp Sense | 32-pin SOICW
Exposed Pad | Production
EVB | | MM908E621 | Integrated Quad Half-Bridge and Triple
High-side with Embedded MCU and
LIN for High End Mirror | | | | | | | | | | | | | MM908E622 | Integrated Quad Half-Bridge, Triple
High-side and EC Glass Driver with
Embedded MCU and LIN for High End
Mirror | | See Embe | edded MCU plus | s
Power - 8-I | oit Intellig | ent Distributed | Contro | llers | | | | | MM908E624 | Triple High-side Switch with Embedded MCU+Power+LIN | | | | | | | | | | | | | MM908E625 | Quad Half H-Bridge with P/S + HC08 + LIN | | | | | | | | | | | | | MM912_634 | Integrated S12 MagniV Based Relay
Drivers with LIN | | See S12 N | /lixed-Signal An | alog MCUs | | | | | | | | | MC12XS2 | 12 V Multipurpose Low R _{DS(on)} eXtren | ne Switch | es | | | | | | | | | | | MC33981 | Single High-side Switch (4.0 m Ω), with PWM, Protection and Diagnostics | 1 | Н | 40 | 4 | 100 | 5.0 | Parallel | Status Pin,
Current Monitor,
Temperature | Over-current, Over-
temperature, Short-circuit,
Under-voltage Lock Out | 16-pin PQFN | Production | | MC33982 | Self Protected 2.0 mΩ Switch with Diagnostic and Protection | 1 | Н | 60 | 2 | 150 | 5.0 | SPI and
Parallel | SPI | Temp Sense, Over/Under-
voltage, Shutdown, Over-
current, Reverse Polarity,
Current Recopy | 16-pin PQFN | Production
EVB | | MC33984 | Self Protected 4.0 mΩ Switch with Diagnostic and Protection | 2 | Н | 30 | 4 | 100 | 5.0 | SPI and
Parallel | SPI | Temp Sense, Over/Under-
voltage, Shutdown, Over-
current, Reverse Polarity,
Current Recopy | 16-pin PQFN | Production
EVB | | MC33988 | Self Protected 8.0 mΩ Switch with Diagnostic and Protection | 2 | Н | 30 | 8 | 60 | 5.0 | SPI and
Parallel | SPI | Temp Sense, Over/Under-
voltage, Shutdown, Over-
current, Reverse Polarity,
Current Recopy | 16-pin PQFN | Production
EVB | | MC12XS3 | 12V Automotive Exterior Lighting Mul | ltichannel | eXtreme Sw | itches | | | • | | | | | I. | | MC06XS3517 | Penta High-side Switch (3 x 6m Ω , 2 x 17 m Ω), with PWM, Protection, Diagnostics and SPI Control. Also, 1 logic level output driver. | 5+1 | Н | 2.8, 5.5 | 3 X 6, 2 X 17 | 48, 96 | 5.0 | SPI and
Parallel | SPI | Overcurrent, Overtemperature,
Overvoltage, Undervoltage &
Short-circuit protect | 24-pin PQFN | Production
EVB | | MC07XS3200 | Dual High-side Switch (2 x 7mΩ), with PWM, Protection, Diagnostics and SPI Control | 2 | Н | 6.0 | 2 X 7 | 93 | 5.0 | SPI and
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit | 32-pin SOICW
Exposed Pad | Production | | MC09XS3400 | Quad High-side Switch (4 x 9mΩ), with PWM, Protection, Diagnostics and SPI Control | 4 | Н | 6.0 | 4 X 9 | 89 | 5.0 | SPI and
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit | 24-pin PQFN | Production
EVB | | MC10XS3412 | Quad High-side Switch (2 x 10 mΩ, 2 x 12 mΩ), with PWM, Protection, Diagnostics and SPI Control | 4 | Н | 6.0 | 2 x 10, 2 x 12 | 78 | 5.0 | SPI and
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit | 24-pin PQFN | Production
EVB | | MC10XS3425 | Quad High-side Switch (2 x 10 m Ω , 2 x 25m Ω), with PWM, Protection, Diagnostics and SPI Control | 4 | Н | 6.0 | 2 X 10, 2 X 25 | 39, 78 | 5.0 | SPI and
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit | 32-pin SOICW
Exposed Pad | Production
EVB | | MC10XS3435 | Quad High-side Switch (2 x 12 mΩ,
2 x 35 mΩ), with PWM, Protection,
Diagnostics and SPI Control | 4 | Н | 6.0 | 2 x 10, 2 x 35 | 78 | 5.0 | SPI and
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit | 24-pin PQFN | Production
EVB | # Power Actuation — High-side Switches (Solid State Intelligent Switches) (continued) | Product | Description | No of
Outputs | High-side
or Low-
side | Maximum Current
Each Output (A) | R _{DS(on)} (mΩ)
of Each
Output | Current
Limitation
(A) | Current
Limitation
Standby Max (μA) | Control | Status/Fault
Reporting | Protection Features | Packaging | Status | |------------|--|------------------|------------------------------|------------------------------------|---|------------------------------|---|---------------------|---------------------------|--|-----------------------------|-------------------| | MC10XS3535 | Penta High-side Switch (3 x 10 m Ω , 2 x 35 m Ω), with PWM, Protection, Diagnostics and SPI Control. Also, 1 logic level output driver. | 5+1 | Н | 2.8, 5.5 | 3x10, 2x35 | 44, 88 | 2.0 | SPI and
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit | 24-pin PQFN | Production
EVB | | MC15XS3400 | Quad High-side Switch (4 x 15 m Ω), with PWM, Protection, Diagnostics and SPI Control | 4 | Н | 6.0 | 15 | 78 | 5.0 | SPI and
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit | 24-pin PQFN | Production
EVB | | MC35XS3400 | Quad High-side Switch (4 x 35 m Ω), with PWM, Protection, Diagnostics and SPI Control | 4 | Н | 6.0 | 35 | 39 | 5.0 | SPI and
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit | 24-pin PQFN | Production
EVB | | MC35XS3500 | Penta High-side Switch ($5 \times 35 \text{ m}\Omega$), with PWM, Protection, Diagnostics and SPI Control. Also, 1 logic level output driver. | 5+1 | Н | 2.8 | 35 | 39.5 | 2.0 | SPI and
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit | 24-pin PQFN | Production
EVB | | MC12XS6 | External Automotive Lighting Multich | annel Sca | lable eXtrem | e Switches | | | | | | | • | | | MC07XS6517 | Penta High-side Switch (3 x 7 m Ω , 2x 17 m Ω), with PWM, Protection, Diagnostics and SPI Control. Also, 1 logic level output driver. | 5+1 | Н | 11, 5.5 | 3 x 17
2 x 7 | 100, 50 | 20 | SPI
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit | 54-pin SOICW
Exposed Pad | Production
EVB | | MC08XS6421 | Quad High-side Switch (2 x 8 m Ω , 2x 21 m Ω), with PWM, Protection, Diagnostics and SPI Control. Also, 1 logic level output driver | 4+1 | Н | 11, 5.5 | 2 x 8.0
2 x 21.0 | 100, 50 | 20 | SPI
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit | 32-pin SOICW
Exposed PAD | Production
EVB | | MC17XS6400 | Quad High-side Switch (4 x 17 m Ω), with PWM, Protection, Diagnostics and SPI Control. Also, 1 logic level output driver | 4+1 | Н | 5.5 | 4 x 17 | 50 | 20 | SPI
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit | 32-pin SOICW
Exposed PAD | Production
EVB | | MC17XS6500 | Penta High-side Switch ($5 \times 17 \text{ m}\Omega$), with PWM, Protection, Diagnostics and SPI Control. Also, 1 logic level output driver. | 5+1 | Н | 5.5 | 5 x 17 | 50 | 20 | SPI
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit | 32-pin SOICW
Exposed Pad | Production
EVB | | MC10XS6200 | Dual High-side Switch (2 x 10 m Ω), with PWM, Protection, Diagnostics and SPI Control. Also, 1 logic level output driver | 2+1 | Н | 9 | 2 x 10 | 85 | 20 | SPI
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit | 32-pin SOICW
Exposed Pad | Production
EVB | | MC10XS6225 | Dual High-side Switch (1 x 10 m Ω , 1 x 25 m Ω), with PWM, Protection, Diagnostics and SPI Control. Also, 1 logic level output driver | 2+1 | Н | 9, 4.5 | 1 x 10
1 x 25 | 85, 40 | 20 | SPI
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit | 32-pin SOICW
Exposed Pad | Production
EVB | | MC10XS6325 | Triple High-side Switch (2 x 10 m Ω , 1 x 25 m Ω), with PWM, Protection, Diagnostics and SPI Control. Also, 1 logic level output driver | 3+1 | Н | 9, 4.5 | 2 x 10
1 x 25 | 85, 40 | 20 | SPI
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit | 32-pin SOICW
Exposed Pad | Production
EVB | | MC25XS6300 | Triple High-side Switch (3 x 25 m Ω), with PWM, Protection, Diagnostics and SPI Control. Also, 1 logic level output driver | 3+1 | Н | 4.5 | 3 x 25 | 40 | 20 | SPI
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit | 32-pin SOICW
Exposed Pad | Production
EVB | | MC40XS6500 | Penta High-side Switch ($5 \times 40 \text{ m}\Omega$), with PWM, Protection, Diagnostics and SPI Control. Also, 1 logic level output driver | 5+1 | Н | 3.9 | 5 x 40 | 35 | 20 | SPI
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit | 32-pin SOICW
Exposed Pad | Production
EVB | ### Power Actuation — High-side Switches (Solid State Intelligent Switches) (continued) | Product | Description | No of
Outputs | High-side
or Low-
side | Maximum Current
Each Output (A) | R _{DS(on)} (mΩ)
of Each
Output | Current
Limitation
(A) | Current
Limitation
Standby Max (μΑ) | Control
1 | Status/Fault
Reporting | Protection Features | Packaging | Status | |---------|---|------------------|------------------------------|------------------------------------|---|------------------------------|---|---------------------|---------------------------|--|----------------------------|-------------------| | MC24XS4 | External Automotive Lighting Multich | nannel Sca | lable eXtrem | e Switches | | | |
| | | | | | | Dual High-side Switch (2 x 6 m Ω), with PWM, Protection, Diagnostics and SPI Control (24 V) | | Н | 9.0 | 2 X 6 | 30, 90 | 10 | SPI and
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit, Parallel operation | 24-pin PQFN | Production
EVB | | | Dual High-side Switch (2 x 10 mΩ),
with PWM, Protection, Diagnostics and
SPI Control (24 V) | 2 | Н | 6.0 | 2 X 10 | 18, 55 | 10 | SPI and
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit, Parallel operation | 24-pin PQFN | Production
EVB | | | Dual High-side Switch (2 x 20 mΩ), with PWM, Protection, Diagnostics and SPI Control (24 V) | 2 | Н | 3.0 | 2 X 20 | 9.0, 27 | 10 | SPI and
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit, Parallel operation | 24-pin PQFN | Production
EVB | | | Dual High-side Switch (2 x 22 mΩ), with PWM, Protection, Diagnostics, and SPI Control (24 V) | 2 | Н | 3.0 | 2 X 22 | 9.0, 27 | 10 | SPI and
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit, Parallel operation | 32-pin SOIC
Exposed Pad | Production
EVB | | | Dual High-side Switch (2 x 50 mΩ), with PWM, Protection, Diagnostics, and SPI Control (24 V) | 2 | Н | 1.2 | 2 x 50 | 3.5, 11 | 10 | SPI and
Parallel | SPI | Fail-safe Mode, Overcurrent
Shutdown, Overtemperature,
Short-circuit, Parallel operation | 32-Pin SOIC
Exposed Pad | Production
EVB | ^{1.} Products available with SPI Control work with the KITUSBSPIEVME and the KITUSBSPIDGLEVME USB-SPI Interface Boards. ### Power Actuation — H-Bridge and Motors Drivers | Product | Description | Main Characteristics | No of
Outputs | R _{DS(on)} (mΩ) of
Each Output
Typical at 25 °C | Current Limit
Threshold
Max (A) | Sleep Current Max | Control ¹ | Status/Fault
Reporting | Protection Features | Packaging | Status | |---------|---|--|------------------|--|---------------------------------------|-------------------|----------------------|---------------------------|---|---|-------------------| | MC33186 | H-Bridge Driver (5.0 A) | Monolithic H-Bridge ideal for
fractional horsepower DC-
motor and bi-directional thrust
solenoid control. Load can be
PWM'ed up to 10 kHz | 2 | 150 | 7.8 | _ | Parallel | Status Flag | Short-circuit,
Current Limit,
Overtemperature,
Undervoltage | 20-pin HSOP | Production | | MC33879 | $\begin{array}{l} \text{(1.0 }\Omega\text{R}_{\text{DS(on)}}\text{) Configurable} \\ \text{Eight Output SPI Controlled} \\ \text{Switch} \end{array}$ | 8-output hardware configurable, high-side/ low-side switch with 16-bit serial input control using SPI with up to 1.2 A current driving capability | 8 | 750 | 1.2 | 5 μΑ | SPI w/2
PWM | SPI | Short-circuit, Current Limit,
Overtemperature, Open load
detection, Overvoltage | 32-pin SOICW
Exposed Pad | Production
EVB | | MC33880 | Configurable Eight Output SPI
Controlled Switch | 8-output hardware configurable, high-side/low-side switch with 16-bit serial input control using SPI with up to 2.0 A current driving capability | 8 | 550 | 2.0 | 5 μΑ | SPI w/2
PWM | SPI | Short-circuit, Current Limit,
Overtemperature, Open load
detection, Overvoltage | 32-pin SOICW | Production
EVB | | MC33886 | H-Bridge Driver (5.2 A) | Monolithic H-Bridge ideal for
fractional horsepower DC-
motor and bi-directional thrust
solenoid control. Load can be
PWM'ed up to 10 kHz | 2 | 120 | 7.8 | _ | Parallel | Status Flag | Short-circuit,
Current Limit,
Overtemperature,
Undervoltage | 20-pin HSOP | Production
EVB | | MC33887 | H-Bridge Driver with Sleep Mode
and current feedback (5.0 A) | Monolithic H-Bridge ideal for
fractional horsepower DC-
motor and bi-directional thrust
solenoid control. Load can be
PWM'ed up to 10 kHz | 2 | 120 | 7.8 | 50 μΑ | Parallel | Status Flag | Short-circuit,
Current Limit,
Overtemperature,
Undervoltage | 20-pin HSOP,
36-pin PQFN,
54-pin SOICW
Exposed Pad | Production
EVB | | MC33899 | Programmable H-Bridge Power IC | H-Bridge with SPI based diagnostics and configurability designed to drive a DC motor in both forward and reverse shaft rotation under Pulse Width Modulation (PWM) of speed and torque | 2 | _ | 10.6 | 145 μΑ | SPI and
Parallel | SPI | Open Circuit detect, Undervoltage,
Overtemperature Shutdown,
Output Short-circuit Current Limit | 30-pin HSOP | Production | #### Power Actuation — H-Bridge and Motors Drivers (continued) | Product | Description | Main Characteristics | No of
Outputs | R _{DS(on)} (mΩ) of
Each Output
Typical at 25 °C | Current Limit
Threshold
Max (A) | Sleep Current Max | Control ¹ | Status/Fault
Reporting | Protection Features | Packaging | Status | |------------|--|---|------------------|--|--|-------------------|----------------------|---------------------------|---|---|-----------------------------------| | MC33926 | 5.0 A Throttle Control H-Bridge | H-Bridge power IC for DC servo motor control like engine throttle control. Load can be PWM'ed up to 20 kHz. | 2 | 120 | 8.0 | 50 μΑ | Parallel | Status Flag | Output Short-circuit Protect,
Overcurrent Limit, Overtemperature | 32-pin PQFN | Production
EVB | | MC33931 | 5.0 A Throttle Control H-Bridge | H-Bridge power IC for DC
servo motor control like
engine throttle control. Load
can be PWM'ed up to 11 kHz | 2 | 120 | 8.0 | 50 μΑ | Parallel | Status Flag | Output Short-circuit Protect,
Overcurrent Limit, Overtemperature | 44-pin HSOP,
32-pin SOICW
with Exposed
Pad | Production
EVB | | MC33932 | 5.0 A Throttle Control Dual H-
Bridge | H-Bridge power IC for DC
servo motor control like
engine throttle control. Load
can be PWM'ed up to 11 kHz | 4 | 120 | 8.0 | 50 μΑ | Parallel | Status Flag | Output Short-circuit Protect,
Overcurrent Limit, Overtemperature | 44-pin HSOP,
54-pin SOICW
with Exposed
Pad | EVB | | MC33HB2000 | 10 A H-Bridge, Programmable
Brushed DC Motor Driver | H-Bridge power IC for brushed DC motor control. Load can be controlled via parallel inputs as well as SPI with advanced diagnostic to meet ISO26262 functional safety standards | 2 | _ | SPI selectable
5.1/6.7/8.4/
10.3 | 50 μA | SPI,
Parallel | SPI,
Status Flag | Charge pump undervoltage,
overvoltage, and undervoltage on
VPWR, short to ground and short to
VPWR for each output, open load,
temperature warning, and
overtemperature shutdown | 32-pin PQFN | 3Q 2015
FRDM
EVB
Planned | | MC33HB2001 | 10 A H-Bridge, Programmable
Brushed DC Motor Driver | H-Bridge power IC for brushed DC motor control. Load can be controlled via parallel inputs as well as SPI with advanced diagnostic to meet ISO26262 functional safety standards | 2 | _ | SPI selectable
5.1/6.7/8.4/
10.3 | 50 μA | SPI,
Parallel | SPI,
Status Flag | Charge pump undervoltage,
overvoltage, and undervoltage on
VPWR, short to ground and short to
VPWR for each output, open load,
temperature warning, and
overtemperature shutdown | 32-pin PQFN | 3Q 2015
FRDM
EVB
Planned | ^{1.} Products available with SPI Control work with the KITUSBSPIEVME and the KITUSBSPIDGLEVME USB-SPI Interface Boards. ### Power Actuation — H-Bridge Stepper Motors | Produc | Description | Main Characteristics | Operating Voltage (V) | Packaging | Status | |--------|---|---|-----------------------|--------------------------------|--------------------------| | MM908E | Stepper Motor Control, Quad Half-Bridge with Embedded MCU and LIN for High Temperature T_J = 135 °C | Voltage Regulator 5.0 V/60 mA, LIN Physical Layer with Selectable Slewrates | 5.0 to 28 | 54-pin SOICW
Exposed
Pad | Production
EVB ('625) | #### Power Actuation — Pre-Drivers (High-side MOSFET Gate Drivers) | Product | Description | Main Characteristics | Operating
Voltage (V) | Control ¹ | Output Drives
High/Low-side,
Drive Current | Status
Reporting | Protection Features | Packaging | Status | |---------|--|--|--------------------------|--------------------------------------|--|----------------------|---|-----------------------------|---------------------------------| | MC33800 | Engine Control Integrated Circuit | Engine
control IC, with six MOSFET gate pre-drivers, eight low-side Switches, and two constant current low-side switches | 5.0 to 36 | Parallel, SPI | 6 H, 2 mA (typ) | SPI | Open Load detect,
Overcurrent, Overvoltage,
Shorted Load detect,
Undervoltage, Thermal | 54-pin SOICW
Exposed Pad | Production
EVB | | MC33810 | Automotive Engine Control IC | Engine control IC with four MOSFET/IGBT gate drivers and four low-side switches | 4.5 to 36 | Parallel, SPI | 4 L, 780 μA (typ) | SPI, Status
Flags | Shorted Load detect,
Thermal | 32-pin SOICW
Exposed Pad | Production
EVB | | MC33812 | Single cylinder Engine control IC. | Engine control power IC, with 3 Low-side drivers, one pre-
driver, +5.0 V pre-regulator, ISO-9141 physical interface
and MCU watchdog circuit. | 4.5 to 36 | Parallel | 2L, 4.0 A (typ)
1L, 1.5 A (typ) | Parallel | Overcurrent, Outputs Short to Battery, Overtemperature Protect | 32-pin SOICW
Exposed Pad | Production
EVB
Ref.Design | | MC33883 | Quad TMOS driver, for fuel injector | Quad TMOS driver, in H-Bridge configuration | 5.5 to 28/55 | 4 non-invert
CMOS, LSTTL
logic | n/a | None | Overvoltage, Undervoltage | 20-pin SOICW | Production
EVB | | MC33937 | Three-Phase Field Effect Transistor Pre-
driver | Triple High-side and Low-side FET pre-drivers, with parallel & SPI control and programmable deadtime (shoot-through protect). | 8.0 to 58 | Parallel, SPI | 3 H, 3 L, 1.0 A
(typ) | SPI | Programmable Deadtime,
Reverse Charge Injection | 54-pin SOICW
Exposed Pad | Production
EVB | | | Three Phase Field Effect Transistor Pre-
driver | Triple High-side and Low-side FET pre-drivers, with parallel & SPI control and programmable deadtime (shoot-through protect) | 8.0 to 58 | Parallel, SPI | 3 H, 3 L, 1.0 A
(typ) | SPI | Programmable Deadtime,
Reverse Charge Injection | 56-pin QFN | 3Q 2015
EVB | ^{1.} Products available with SPI Control work with the KITUSBSPIEVME and the KITUSBSPIDGLEVME USB-SPI Interface Board. # Power Actuation — Squib Drivers | Product | Description | Main Characteristics | Regulation Voltage | Operating Voltage (V) | Packaging | Status | |---------|-------------|---|--------------------|-----------------------|-----------------|---------------------------| | MC33797 | | Four-Channel High-side and Low-side 2.0 A FET Switches, Externally Adjustable FET Current Limiting, Adjustable Current Limit Range: 0.8 A to 2.0 A, 8-bit SPI for Diagnostics and FET Switch Activation, Diagnostics for High-side Safing Sensor Status | 7.0 to 35 | 4.75 to 5.25 | 32-pin
SOICW | Production
Ref. Design | ### Power Actuation — Powertrain Control and Engine Management | Product | Description | Main Characteristics | Peak Current Limit
(A) | R _{DS(on)}
(mΩ) | Control [†] | Operating Voltage (V) | Packaging | Status | |---------|--|--|---|---|----------------------|-----------------------|--------------------------------|---------------------------------| | MC33800 | Engine Control Integrated Circuit | Engine control IC, with six MOSFET gate pre-drivers, eight Low-side Switches, and two constant current Low-side Switches. | 2 @ 6.0
6 @ 2.0
1 @ 2.8
1 @ 1.0 | 2 @ 700
6 @ 1000
1 @ 250
1 @ 1000 | SPI,
Parallel | 5.0 to 36 | 54-pin
SOICW
Exposed Pad | Production
EVB | | MC33810 | Automotive Engine Control IC | Engine control IC with four MOSFET/IGBT gate drivers and four Low-side Switches. | 6.0 | 100 | SPI,
Parallel | 4.5 to 36 | 32-pin
SOICW
Exposed Pad | Production
EVB | | MC33811 | Solenoid Monitor Integrated Circuit
See Signal Conditioning | 5 input solenoid monitoring to verify proper electrical and mechanical solenoid operation. | _ | _ | SPI | 10.5 to 15.5 | 16-pin SOICW | Production
EVB | | MC33812 | Single cylinder Engine control IC | Engine control power IC, with 3 Low-side drivers, one pre-driver, +5V pre-regulator, ISO-9141 physical interface and MCU watchdog circuit. | 2 @ 6.0
1 @ 2.0 | 2@200
1@1000 | Parallel | 4.5 to 36 | 32-pin
SOICW
Exposed Pad | Production
EVB
Ref.Design | | MC33813 | One Cylinder Small Engine Control IC | Engine control analog power IC intended for one cylinder motorcycle and other small engine control applications. Includes ISO9141 communication interface. | 1 @ 3.0
1 @ 6.0
2 @ 2.4
1 @ .110 | 1 @ 400
1 @ 300
2 @ 1500
1 @ 20000 | SPI,
Parallel | 6.0 to 18 | 48-pin
LFQP,
Exposed Pad | Production
EVB | | MC33814 | Two Cylinder Small Engine Control IC | Engine control analog power IC intended for two cylinder motorcycle and other small engine control applications. Includes ISO9141 communication interface. | 2 @ 3.0
1 @ 6.0
2 @ 2.4
1 @ .110 | 2 @ 400
1 @ 300
2 @ 1500
1 @ 20000 | SPI,
Parallel | 6.0 to 18 | 48-pin
LFQP,
Exposed Pad | Production
EVB | | MC33816 | Engine Control IC with Smart Gate Control | A 12-channel gate driver IC for automotive engine control applications. The IC consist of five external MOSFET high-side pre-drivers and seven external MOSFET low side pre-drivers. Also contains four independent and concurrent digital microcores | - | - | SPI
Parallel | 9.0 to 16 | 64-pin
LQFP
Exposed Pad | Production
EVB | | PT2000 | Programmable Solenoid Controller for Automotive/Truck Engine (Direct Injection) Control | The PT2000 is a programmable gate driver IC for precision solenoid control applications. The chip integrates six microcores used to control, seven external MOSFET high-side pre-drivers, eight external MOSFET low-side pre-drivers (two of them with higher switching frequency can be used for DC/DC converters), integrated end of injection detection, current measurement, and diagnostics and protection for both high-side and low-side. | - | - | SPI
Parallel | 5.0 to 36 | 80-pin LQFP | Production
EVB Planned | | MC33899 | Programmable H-Bridge Power IC | Designed to drive a DC motor in both forward and reverse shaft rotation under pulse-width modulation (PWM) of speed and torque. Can be controlled by SPI or parallel control lines. | 15.0 | 90 | SPI,
Parallel | 6.0 to 26.5 | 30-pin
HSOP | Production | | MC33926 | 5.0 A Throttle Control H-Bridge | H-Bridge power IC for DC servo motor control like engine throttle control. Load can be PWM'ed up to 20 KHz | 8.0 | 120 | Parallel | 8.0 to 28 | 32-pin
PQFN | Production
EVB | | MC33937 | Three-Phase Field Effect Transistor Pre-
Driver | Triple High-side and Low-side FET pre-drivers, with parallel & SPI control and programmable deadtime (shoot-through protect). | _ | _ | SPI,
Parallel | 8.0 to 58 | 54-pin
SOICW
Exposed Pad | Production
EVB | | MC33975 | 22 input Multiple Switch Detect Interface
with 32 mA Wetting Current and Wake-up
See Signal Conditioning | 22 inputs contact monitoring (14 GND, 8 configurable), 4.0 mA or 32 mA pulse wetting current, low-power mode interrupt capability, wake-up. Can supply current to external sensors. | _ | - | SPI | 5.5 to 26.5 | 32-pin
SOICW
Exposed Pad | Production
EVB | ^{1.} Products available with SPI Control work with the KITUSBSPIEVME and the KITUSBSPIDGLEVME USB-SPI Interface Boards. #### Communication Transceivers — CAN Physical Interface Components | Product | Description | Main Characteristics | Bus Type and
Standard | Operating
Voltage
(V) | Cur
Limitatior
(µ.
Typ | Standby | Other Features | Control and
Status
Reporting ¹ | Protection
Features | Packaging | Status | |------------|---|--|--------------------------|-----------------------------|---------------------------------|---------|--|---|---------------------------------------|--------------|-------------------| | MC33CM0902 | Dual High-Speed CAN Transceiver | The CM0902 is a dual high-speed CAN transceiver device, providing the physical interface between the CAN protocol controller of an MCU and the physical dual wire CAN bus. Both channels are completely independent, featuring CAN bus wake-up on each CAN interface, and TXD dominant timeout functionality | Dual CAN HS dual
wire | 4.5 to 5.5 | - | 15 | CAN bus wake-up, 3.3 or 5.0 V
MCU I/O, TXD dominant time-
out | Parallel | High system ESD spec. | 14-pin SOICN | Production
EVB | | MC33742 | System Basis Chip with Enhanced High-Speed CAN (250k to 1Mbps) | 90 | e System Bas | ie Chin | | | | | | | | | MC33889 | System Basis Chip Lite with Low-Speed CAN | -
- | e System Das | is Cilip | | | | | | | | | MC33897 | Single-wire CAN | Low or high (33.3 kbps or 83.3) kbps
data rates, wake-up capability
(GMW3089 v2.3
compatible) | Single-wire CAN | 6.0 to 27 | 45 | 60 | Regulator Control Output
Waveshaping, Undervoltage
lockout detect and loss
of GND | 2 Mode
Control Pins | Thermal
shutdown, current
limit | 14-pin SOICN | Production | | MC33901 | High-Speed CAN Transceiver | Single CAN high-speed physical layer provides operation up to 2 Mbps and the physical interface between an MCU and the physical dual wires of the CAN bus. | CAN HS dual
wire | 4.5 to 5.5 | - | 5.0 | CAN bus wake-up. TXD dominant timeout, 3.3 or 5.0 V MCU I/O | Parallel | High system ESD spec. | 8-pin SOICN | Production
EVB | | MC33903 | System Basis Chip (SBC)-Gen 2-
with High Speed CAN & LIN
Interfaces | | | | | | | | | | | | MC33904 | System Basis Chip (SBC)-Gen 2-
with High Speed CAN Interface | | | | | | | | | | | | MC33905 | System Basis Chip (SBC)-Gen 2-
with High Speed CAN & LIN
Interfaces | 9 | Occatore Basis | Ola in | | | | | | | | | MC33907 | Safe System Basis Chip with Buck and Boost DC/DC up to 800 mA | | System Basis | Cnip | | | | | | | | | MC33908 | Safe System Basis Chip with Buck and Boost DC/DC up to 1.5 A | | | | | | | | | | | | | System Basis Chip with CAN, LIN and Multiple Switch-to-Ground Interface | | | | | | | | | | | | MC33989 | System Basis Chip with High-
Speed CAN | | | | | | | | | | | ^{1.} Products available with SPI Control work with the KITUSBSPIEVME and the KITUSBSPIDGLEVME USB-SPI Interface Boards. ### Communication Transceivers — LIN, ISO-9141, J-1850 Physical Interface Components | Product | Description | Main Characteristics | Bus Type
and Standard | Operating Voltage | | rent
n Standby | Other
Features | Control and
Status | Protection
Features | Packaging | Status | |---------|---|---|---------------------------------|-------------------|-----|-------------------|--|------------------------|---|--------------|---------------------------------| | | | | | (V) | | A)
Max | | Reporting ¹ | | | | | MC33399 | Local Interconnect Network (LIN)
Physical Layer | Offers speed communication from 1.0 kbps to 20 kbps, and up to 60 kbps for Programming Mode. It supports LIN Protocol Specification 1.3. | LIN Single-wire | 7.0 to 18 | 20 | 50 | Wake-up input pin, control of external voltage regulator | Parallel | Current limitation, Thermal protection | 8-pin SOICN | Production
EVB | | MC33660 | ISO K Line Serial Link Interface | ISO9141 physical interface device | ISO9141 | 8.0 to 18 | _ | 50 | Data rates up to 50 Kbps | Serial | Output short-
circuit
Thermal
protection | 8-pin SOICN | Production
EVB | | MC33661 | eLIN – Enhanced LIN Physical Layer
(Local Interconnect Network) | Selectable slew rate for operations at 10, 20, 100 kbps; bus short to ground fail-safe; excellent EMC behavior. | LIN Single-wire | 7.0 to 18 | 8.0 | 12 | Compatibility with 5.0 V
and 3.3 V micros, wake-up
input control of external
regulator | Parallel | Current limitation, Thermal protection | 8-pin SOICN | Production
EVB | | MC33662 | LIN 2.1/SAE J2602-2 LIN Physical
Layer Transceiver | Single wire LIN supports normal baud rates of 10 kbps (J) or 20 kbps (L) and fast rate of 100 kbps | LIN single wire,
SAE J2602- | 7.0 to 18 | 6.0 | 11 | Active bus waveshaping,
EMI immunity, Local &
Remote wakeup | Parallel | Current limitation, Thermal protection | 8-pin SOICN | Production
EVB | | MC33663 | LIN 2.1 / SAEJ2602-2 Dual LIN
Physical Layer Transceivers | Integrates two physical layer LIN bus transceivers. The devices offer baud rates of 10 and 20 kbps as well as 100 kbps for test/programming modes. | LIN Single-wire,
SAE J2602-2 | 7.0 to 18 | 12 | 36 | Active bus waveshaping,
EMI immunity, 2 wake-up
input pins, Compatibility
with 5.0 V and 3.3 V micros | Parallel | Over-
temperature
protection,
Output short-
circuit | 14-pin SOICN | Production | | MC33664 | Isolated Network High Speed
Transceiver Physical Layer (TPL) | Isolated network communication rate at 2.0 Mbps, Dual SPI architecture, High EMC performance | Dual wires | 4.75 to 5.5 | 30 | 50 | 3.0 V and 5.0 V compatible,
low sleep mode current
with automatic bus wake
up, current limit protection | SPI | Current
limitation | 16-pin SOICN | 3Q 2015
EVB
Planned | | MC33812 | Single cylinder Engine control IC | Engine control power IC, with 3 Low-
side drivers, one pre-driver, +5V pre-
regulator, ISO-9141 physical interface
and MCU watchdog circuit. | ISO-9141 | 4.5 to 36 | _ | _ | MCU watchdog timer, +5V pre-regulator for MCU, MCU power on RESET | Parallel | Overcurrent Outputs Short to Battery, Overtemperat ure Protect | 32-pin SOICW | Production
EVB
Ref.Design | | MC33903 | System Basis Chip (SBC)-Gen 2-
with High Speed CAN & LIN
Interfaces | | | | - | • | | | | | | | MC33905 | System Basis Chip (SBC)-Gen 2-
with High Speed CAN & LIN
Interfaces | | | | | | | | | | | | MC33907 | Safe System Basis Chip with Buck and Boost DC/DC up to 800 mA | | | | | | | | | | | | MC33908 | Safe System Basis Chip with Buck and Boost DC/DC up to 1.5 A | See Syste | m Basis Chip |) | | | | | | | | | MC33909 | System Basis Chip with LIN, CAN and Multiple Switch-to-Ground Interface | | • | | | | | | | | | | MC33910 | System Basis Chip with High-side
Drivers and LIN Physical Interface | | | | | | | | | | | | MC33911 | System Basis Chip with DC Motor
Pre-driver and LIN Physical Interface | | | | | | | | | | | | MC33912 | System Basis Chip with DC Motor
Pre-driver and Current Sense and
LIN Physical Interface | | | | | | | | | | | Products available with SPI Control work with the KITUSBSPIEVME and the KITUSBSPIDGLEVME USB-SPI Interface Boards. # Communication Transceiver - Distributed Systems Interface (DSI) Components | Product | Description | Main Characteristics | Max Data Rate | Operating
Temp Range
(°C) | Bus Sw. Resistance,
typ/max (Ω) | Packaging | Status | |---------|---|--|---------------|---------------------------------|------------------------------------|--------------------------------|---| | MC33780 | Dual DSI Master with Differential Drive | Bus controller for two differential DSI channels. SPI port for uC interface. Variable CRC generation and detection, thermal protection, frequency spreading. | 150 kbps | -40 to +85 | n/a | 16-pin
SOICW | Production | | MC33781 | Quad DSI Master with Differential
Drive | Bus controller for four differential DSI channels. Dual SPI ports for uC and safing interfaces. Variable CRC generation and detection, comprehensive fault detection, thermal protection, frequency spreading | 200 kbps | -40 to +90 | n/an/a | 32-pin
SOICW
Exposed Pad | Production | | MC33784 | DSI Sensor Interface | DSI slave device optimized as a sensor interface. Differential bus capability & dual bus switches for improved EMC performance, 2-channel 10-bit ADC, 5.0V regulated output, 3 configurable logic pins, CRC generation and checking. | n/a | -40 to +150 | 3.0/6.0 | 16-pin
SOICN | Production | | MC33789 | Airbag System Basis Chip (IC) (SBC) | Air bag control module which monitors battery voltage, sensor status and supplies various voltages to the air bag system. Uses SPI for MCU communication. Uses PSI5 for satellite sensors communication. | 125 kbps | -40 to +125 | n/a | 64-pin
LQFP
Exposed Pad | Production
EVB
(contact
sales) | | MC33790 | Distributed System Interface (DSI)
Physical Interface (DSIP) | Dual current-limited waveshaped outputs, current sensing inputs, 3.3 V and 5.0 V | 5 - 150 kbps | -40 to +85 | 6.0 | 16-pin
SOICW | Production | | MC33793 | DSI Sensor Interface | DSI slave device. 5.0 V regulated output, 4 configurable I/O pins (logic I/O or 8-bit ADC), fault tolerant, logic output high current buffer. | n/a | -40 to +125 | 4.0/8.0 | 16-pin SOICN | Production | #### Millimeter Wave and Radar | Product | Description | Main Characteristics | T _A = Āmb | Operating Temp Range (°C) T _A = Ambient Temp T _B = Backside of Die Temp T _A T _B | | Status | |------------|---|--|----------------------|--|------------|-----------------------------------| | MC33MR1501 | 2-channel 77 GHz Radar Transmitter | 3.3 V and 5.0 V power supply, Integrating fractional-N phase lock loop (PLL) with a voltage control oscillator (VCO), which can generate frequency modulation continuous waveform (FMCW) signals with digitally programmable frequencies | 40 to +125 | | Bare die | 3Q 2015 | | MC33MR1503 | 4-channel 77 GHz Radar Receiver | 3.3 V power supply integrating mixer and IF buffer | _ | -40 to +125 | Bare die | 3Q 2015 | | MC33MR2001 | Multi-channel 77 GHz Radar
Transceiver Chipset | Scalable number of transmitter and receiver channels | -40 to +125 | | 6x6 mm BGA | Production
KITRADAR
2001EVM | Anti-Lock Braking System | Product |
Description | Main Characteristics | Load Supply
Min. | Voltage (V)
Max. | Other Features | Interface and Input
Control | Protection Features | Packaging | Status | |------------|---|---|---------------------|---------------------|--|--------------------------------|---|------------------|---------------------------| | MC33SB0400 | Two Channels Motorcycle and
Scooter ABS in the smallest ABS
Package | Integrates Safe switch, Valve Drivers, Wheel Speed Sensor Interface, Motor Pump predriver, and a warning lamp driver inside a small package 7x7 size, Low R _{DS(on)} (160 mOhms) allowing heatsink removal | 5.3 | | Low R _{DS(on)} (160 mOhms),
PWM up to 5 KHz, Low-side
Drivers up to 5.0 A, Vehicle
Speed Output, Diagnostic line,
Supervision | SPI | Overcurrent, Open
Load,
Overtemperature,
VDS monitoring,
Overvoltage,
Undervoltage, Clock
Failure, Watchdog | 48-pin
QFN-EP | 3Q 2015
EVB
Planned | | MC33SB0401 | One Channel Motorcycle and
Scooter ABS in the smallest ABS
Package | Integrates Safe switch, Valve Drivers, Wheel Speed Sensor Interface, Motor Pump predriver, and a warning lamp driver inside a small package 7x7 size, Low R _{DS(on)} (160 mOhms) allowing heatsink removal | 5.3 | 30 | Low R _{DS(on)} (160 mOhms),
PWM up to 5 KHz, Low-side
Drivers up to 5.0 A, Vehicle
Speed Output, Diagnostic line,
Supervision | SPI | Overcurrent, Open
Load,
Overtemperature,
VDS monitoring,
Overvoltage,
Undervoltage, Clock
Failure, Watchdog | 48-pin
QFN-EP | 3Q 2015
EVB
Planned | Signal Conditioning | Product | Description | Main Characteristics | Switch
Monitor
Voltage (V) | Operating
Voltage (V) | Packaging | Status | |---------|---|--|----------------------------------|--------------------------|--|-------------------| | MC33811 | Solenoid Monitor Integrated Circuit | 5 input solenoid monitoring to verify proper electrical and mechanical solenoid operation. | 0 to 64 | 10.5 to 15.5 | 16-pin SOICW | Production
EVB | | MC33972 | 22 input Multiple Switch Detect
Interface with 16 mA Wetting
Current and Suppressed Wake-up | Multiple switch detection interface with suppressed wake-up designed to detect closing and opening of up to 22 switch contacts (14 GND, 8 configurable), wetting current of 2.0 mA or 16 mA. | -14 to 38
-14 to 40 | 5.5 to 26 | 32-pin SOICW,
32-pin SOICW
Exposed Pad | Production
EVB | | MC33975 | 22 input Multiple Switch Detect
Interface with 32 mA Wetting
Current and Wake-up | 22 inputs contact monitoring (14 GND, 8 configurable), 4.0 mA or 32 mA pulse wetting current, low-power mode interrupt capability, wake-up. Can supply current to external sensors. | -14 to 38/40 | 5.5 to 26.5 | 32-pin SOICW
Exposed Pad | Production
EVB | | MC33978 | 22 input Multiple Switch Detect
Interface with programmable Wetting
Current | Multiple switch detection interface designed to detect closing and opening of up to 22 switch contacts (14 GND, 8 configurable), programmable wetting current from 2.0 to 20 mA. 24 to 1 Analog Multiplexer. | -14 to 38 V | 4.5 to 36 | 32-pin SOICW
Exposed Pad | Production
EVB | System Basis Chip | Product | Description | Main Characteristics | Bus Type
and Standard | Operatin
g
Voltage
(V) | Limi
Sta | rrent
tation
ndby
'A)
Ma
x | Other Features | Control
and
Status
Reporting ¹ | Protection Features | Packaging | Status | |---------|--|--|---|---------------------------------|-------------|---|---|--|--|---|---| | MC33742 | System Basis Chip with Enhanced
High-Speed CAN (250K to 1Mbps) | SBC, Dual V_{REG} . Enhance HS CAN with Bus failure diagnostic capability, 4 wake-up inputs. | CAN High-Speed
dual wires | 5.5 to 27 | 60 | 150 | Low power
modes, remote
and local wake-
up capabilities | SPI | Current and thermal protection for
CAN and regulator | 28-pin SOICW,
48-pin QFN | Production
EVB | | MC33789 | Airbag System Basis Chip (SBC) with
Power Supply and PSI5 Sensor
Interface | Air bag control module which monitors battery voltage, sensor status and supplies various voltages to the air bag system. Uses SPI for MCU communication. Uses PSI5 for satellite sensors communication. | PSI5 | 5.2 to 20 | - | - | Safing state
machine, 9
switch input
monitors, 2
config. high/low
side drivers,
Power-on-reset,
watchdog timer,
Squib energy
reserve | SPI | Safing state machine, Scrap mode | 64-pin LQFP
Exposed Pad | Production
EVB
(contact
sales) | | MC33889 | System Basis Chip with Low-Speed Fault Tolerant CAN | Dual 5.0 V regulators LS CAN,
2 wake-up inputs | CAN Low-Speed,
dual wires | 5.5 to 27 | 60 | 100 | Dual voltage
regulator,
Watchdog, wake-
up input, sleep
and stop modes | SPI | Fault tolerant | 28-pin SOICW | Production
EVB | | MC33903 | System Basis Chip (SBC)-Gen 2-with
High Speed CAN & LIN Interfaces | High speed CAN and 1 or 2 LIN physical interface. 5.0 or 3.3 V VDD regulator. | CAN high-speed,
dual wires,
LIN single wire | 5.5 to 27 | 15 | 35 | Fail-safe state
machine,
Configurable I/O,
MUX - out, pin
compatible with
MC33905 | "Secured"
SPI | Overcurrent, Overtemperature,
Short-circuit, protect | 32-pin SOICW
Exposed Pad | Production
EVB | | MC33904 | System Basis Chip (SBC)-Gen 2-with
High Speed CAN Interface | High speed CAN physical interface. 5.0 or 3.3 VDD and VAux regulators, w/current sharing | CAN high-speed,
dual wires | 5.5 to 27 | 15 | 35 | Fail-safe state
machine,
Configurable I/O,
MUX - out, pin
compatible with
MC33905 | "Secured"
SPI | Overcurrent, Overtemperature,
Short -circuit and undervoltage
detect | 32-pin SOICW
Exposed Pad | Production
EVB('905) | | MC33905 | System Basis Chip (SBC)-Gen 2-with
High Speed CAN & LIN Interfaces | High speed CAN & 1 or 2 LIN physical interfaces. 5.0 or 3.3 VDD and VAux regulators, w/current sharing. | CAN high-speed,
dual wires.
LIN single wire | 5.5 to 27 | 15 | 35 | Fail-safe state
machine,
Configurable I/O,
MUX - out, SAFE
output, Low
power modes w/
INT and RST
capability. | "Secured"
SPI | Overcurrent, Overtemperature,
Short -circuit and undervoltage
detect | 32-pin SOICW
Exposed Pad,
54-pin SOICW
Exposed Pad | Production
EVB | | MC33907 | Safe System Basis Chip with Buck
and Boost DC/DC up to 800 mA | Multiple switching and linear voltage regulators, built-in enhanced high speed CAN interface fulfills the ISO11898-2 and -5 standards. | CAN high-speed,
dual wires. | 5.6 to 40 | 32 | 60 | Safe Assure product | "Secured"
SPI | Overcurrent, Overtemperature,
Over & Undervoltage detect | 48-pin LQFP
Exposed Pad | Production
EVB | | Product | Description | Main Characteristics | Bus Type
and Standard | Operatin
g
Voltage
(V) | Limi
Sta | rrent
tation
ndby
(A)
Ma | Other Features | Control
and
Status
Reporting ¹ | Protection Features | Packaging | Status | |---------|--|--|---|---------------------------------|-------------|--------------------------------------|--|--|---|----------------------------|---------------------------| | MC33908 | Safe System Basis Chip with Buck
and Boost DC/DC up to 1.5 A | CĂN interface fulfills the ISO11898-2 and -5 standards. | CAN high-speed,
dual wires. | 5.6 to 40 | 32 | 60 | Safe Assure product | "Secured"
SPI | Overcurrent, Overtemperature,
Over & Undervoltage detect | 48-pin LQFP
Exposed Pad | Production
EVB | | MC33909 | | Two high speed CAN interfaces plus four LINs, compatible with specification 2.1 and SAEJ2602-2. Also contains 17 switch to ground inputs for switch detection. | CAN high-speed,
dual wires.
LIN single wire | 3.5 to 27 | 125
 - | Watchdog timer,
Switched inputs
wake-up, Fail-
safe mode | SPI | Overvoltage | 64-pin LQFP
Exposed Pad | 4Q 2015
EVB
Planned | | MC33910 | System Basis Chip with High-side
Drivers and LIN Physical Interface | LIN 2.0 compatible, 5.0 V/60 mA LDO,
2 High-side drivers w/PWM, 1 analog/
digital input | LIN Single-wire | 5.5 to 18 | 48 | 80 | Hall Sensor
supply,
Configurable
Window
Watchdog | SPI | Multiple wake-up sources, LDO
Fault Detect,
Low Voltage Reset | 32-pin LQFP | Production
EVB ('912) | | MC33911 | System Basis Chip with DC Motor
Pre-driver and LIN Physical Interface | LIN 2.0 compatible, 5.0 V/60 mA LDO,
1 High-side driver & 2 Low-side drivers
w/PWM, 2 analog/digital inputs | LIN Single-wire | 5.5 to 18 | 48 | 80 | Configurable
Window
Watchdog | SPI | Multiple wake-up sources, LDO
Fault Detect,
Low Voltage Reset | 32-pin LQFP | Production
EVB ('912) | | MC33912 | System Basis Chip with DC Motor
Pre-driver and Current Sense and LIN
Physical Interface. | LIN 2.0 compatible, 5.0 V/60 mA LDO,
2 High-side drives & 2 Low-side drivers
w/PWM, 4 analog/digital inputs | LIN Single-wire | 5.5 to 18 | 48 | | Hall Sensor
supply,
Configurable
Window
Watchdog,
Current Sense | SPI | Multiple wake-up sources, LDO
Fault Detect,
Low Voltage Reset | 32-pin LQFP | Production
EVB | | MC33989 | System Basis Chip with High-Speed
CAN | Dual 5.0 V regulators HS CAN,
4 wake-up inputs | CAN High-Speed,
dual wires | 5.5 to 27 | 80 | 150 | Dual voltage
regulator,
Watchdog, wake-
up input, sleep
and stop modes | SPI | Current limitation, thermal | 28-pin SOICW | Production
EVB | ^{1.} Products available with SPI Control work with the KITUSBSPIEVME and the KITUSBSPIDGLEVME USB-SPI Interface Boards. #### Battery Management - Battery Cell Controller | Product | Description | Main Characteristics | Operating
Voltage (V) | Output Voltages | Protection
Features | Packaging | Status | |---------|----------------------------------|---|--------------------------|---|--|--------------------|----------------| | MC33771 | Battery Cell Controller IC (BCC) | 4 Mbps SPI Interface or Isolated 2Mbps Differential Communication 14 Cells Terminal, 1 current channel with Auto PGA 7 Configurable ADC/GPIO/Temperature Sensor Inputs 5.0 V @ 5 mA Temp Reference Supply Output I2C EEPROM interface Fault Output Failure detection: OV/UV voltage, OV/UV temp, internal diagnostics | | Cell balancing : 10 V to 12 V
Fault pin: 5.0 V
GPIO: 5.0 V or 3.3 V | Safety concept: over/undervoltage, over/
under temperature, open/ short cell
balancing detection. Failure can be
reported by the fault pin output | 64-pin LQFP-
EP | 3Q 2015
EVB | ### Embedded MCU plus Power - S12 Mixed-Signal Analog MCUs | Product | Description | Main Characteristics | MCU References | MCU Details | Additional Information | Packaging | Status | |-----------|---|---|----------------|---|---|----------------------------|----------------------------------| | | Battery Sensor with LIN for 12 V
Lead-acid Batteries | Simultaneous Battery voltage & current measurement with 16-bit sigma-delta ADC & IIR filter. Voltage Regulators: 2.5 V/10mA & 60mA, 5.0 V/80 mA. LIN 2.1 Physical Layer w/Selectable Slew rates and triggered wake-up, | 16-bit MCU | S12 16-bit core, 128 K/96 KBytes Flash, 6 KBytes RAM,
4 K Bytes data Flash, ESCI, 16-bit 4 Channel Timer,
Internal Clock Generator, BDM | Selectable Internal or external temp sense, GPIO, including SPI functionality, internal or external oscillator. Window Watchdog with Selectable Timing, Normal/Stop/Sleep/Crank Mode Ctrl. High Voltage Wake-up Inputs, | 48-pin QFN,
Exposed Pad | Production
EVB | | MM9Z1_638 | | This is a fully integrated battery monitoring device. The device supports precise current measurement via an external shunt resistor. The MM9Z1_638 includes LIN 2.2 protocol and physical interface, and an MSCAN protocol controller, | S12Z | EEPROM | Four battery voltage measurements with internal resistor dividers, and up to five direct voltage measurements for use with an external resistor divider. Measurement synchronization between voltage channels and current channels. | 48-pin QFN
Exposed Pad | Production
EVB
Ref. Design | ### Battery Management - Battery Cell Controller | Product | Description | Main Characteristics | Operating
Voltage (V) | Output Voltages | Protection
Features | Packaging | Status | |---------|----------------------------------|---|--------------------------|---|--|--------------------|----------------| | MC33771 | Battery Cell Controller IC (BCC) | 4 Mbps SPI Interface or Isolated 2Mbps Differential Communication 14 Cells Terminal, 1 current channel with Auto PGA 7 Configurable ADC/GPIO/Temperature Sensor Inputs 5.0 V @ 5 mA Temp Reference Supply Output 12C EEPROM interface Fault Output Failure detection: OV/UV voltage, OV/UV temp, internal diagnostics | 9.6 to 61.6 | Cell balancing : 10 V to 12 V
Fault pin: 5.0 V
GPIO: 5.0 V or 3.3 V | Safety concept: over/undervoltage, over/
under temperature, open/ short cell
balancing detection. Failure can be
reported by the fault pin output | 64-pin LQFP-
EP | 3Q 2015
EVB | #### Embedded MCU plus Power - S12 Mixed-Signal Analog MCUs | Product | Description | Main Characteristics | MCU References | MCU Details | Additional Information | Packaging | Status | |------------|--|--|----------------|---|--|-------------------------------|--------| | MM912_P812 | Ignition and Injector Driver System In Package (SiP) | An engine control IC combining an MCU (S12P) and analog control die (MC33812) intended for motorcycle and other single/dual cylinder small engine control applications. | | of 96 KB or 128 KB. The S12P family uses many of the same features found on the S12XS family, including error correction code (ECC) on flash memory, a separate data-flash module for diagnostic or data storage, a fast analog-to-digital converter (ATD), and a frequency modulated phase locked loop (IPLL) that improves electromagnetic compatibility (EMC). | Analog functions consists of three integrated low side drivers, one predriver, a +5.0 V, voltage pre-regulator, an MCU watchdog circuit, an ISO 9141 K-Line interface, and a parallel interface for MCU communication. The three low side drivers are provided for driving a fuel injector, a lamp or LED, and a relay, another injector or fuel pump. | 100 lead LQFP,
Exposed Pad | | | MM912_S812 | Ignition and Injector Driver System In Package (SiP) | An engine control IC combining an MCU (S12XS) and analog control die (MC33812) intended for motorcycle and other single/dual cylinder small engine control applications. | | family, including error correction code (ECC) on flash
memory, a separate data-flash module for diagnostic or
data storage, a fast analog-to-digital converter (ATD), | Analog functions consists of three integrated low side drivers, one predriver, a +5.0 V, voltage pre-regulator, an MCU watchdog circuit, an ISO 9141 K-Line interface, and a parallel interface for MCU communication. The three low side drivers are provided for driving a fuel injector, a lamp or LED, and a relay, another injector or fuel pump. | 100 lead LQFP,
Exposed Pad | | #### S12 Mixed-Signal
Analog MCUs | Product | Description | Main Characteristics | Power Features | MCU Reference | MCU Detail | Additional Information | Packaging | Status | |-----------|------------------|---|----------------|---------------|---|---|----------------------------|-------------------| | MM912_634 | Drivers with LIN | Cascaded dual Voltage Regulator 2.5 V/
50 mA and 5.0 V/80 mA, LIN Physical
Layer with Selectable Slew rates,
Window Watchdog with Selectable Dual
High-side and Dual Low Side Switches
with Embedded S12 MCU + Power + LIN | | | Flash, 2KB RAM, ESCI,
Multi channel 10-bit ADC,
16-bit 4 Channel Timer, | High Voltage Wake-up Inputs,
Selectable Gain I-Sense,
Battery Voltage Sense. Timing,
Normal/Stop/Sleep Mode
Control, Hall Supply of 18 V/30
mA | 48-pin LQFP
Exposed Pad | Production
EVB | ### 8-bit Intelligent Distributed Controllers | Product | Description | Main Characteristics | Power Features | MCU Reference | MCU Detail | Additional Information | Packaging | Status | |-----------|--|---|--|------------------------|--|--|-----------------------------|--------------------------| | MM908E621 | Bridge and Triple High-side with | Voltage Regulator 5.0 V/60 mA, LIN
Physical Layer with Selectable Slew
rates, Window Watchdog, "Normal/Stop/
Sleep Mode "Control | 2 x 275 mΩ Half-Bridges;
2 x 750 mΩ Half-Bridges;
1 x 185 mΩ High-side;
2 x 440 mΩ High-side;
Switched 5.0 V Output (25 mA) | | | 2/3 Pin Hall Sensor Input,
Analog Input with Current
Source, 40 V Rated Wake-up
Input, V _{sup} , Chip Temp. and
Current Sensing | 54-pin SOICW
Exposed Pad | Production | | MM908E622 | | Voltage Regulator 5.0 V/60 mA, LIN
Physical Layer with Selectable Slew
rates, Window Watchdog, "Normal/Stop/
Sleep Mode "Control | 2 x 275 mΩ Half-Bridges;
2 x 750 mΩ Half-Bridges;
1 x 185 mΩ High-side;
2 x 440 mΩ High-side;
Switched 5.0 V Output (25 mA)
EC Glass Driver | | HC08 Core, 16K Flash,
512 Bytes RAM, ESCI, | 2/3 Pin Hall Sensor Input,
Analog Input with
Current Source, 40 V Rated
Wake-up Input, V _{sup} , Chip
Temp. and Current Sensing | 54-pin SOICW
Exposed Pad | Production | | MM908E624 | DC Motor Control Using Relays (for
example, Window Lift, Sun Roof, and
Power Seats), Triple High-side
Switch with Embedded MCU +
Power + LIN | Voltage Regulator 5.0 V/50 mA, LIN
Physical Layer with Selectable Slew
rates, Window Watchdog with Selectable
Timing, Normal/Stop/Sleep Mode Control | 1 x 7 Ω High-side,
2 x 2.5 Ω High-side Switches for
Relay Control | 8-bit MCU
HC908EY16 | 8-Channel 10-bit ADC,
Two 16-bit 2 Channel
Timers, Internal Clock
Generator | Operational Amplifier, 2 x 40 V
Rated Wake-up Inputs | 54-pin SOICW | Production
EVB | | | Mirror Control, Stepper Motor
Control, Door Lock Quad Half-Bridge
and Single High-side with Embedded
MCU and LIN | Voltage Regulator 5.0 V/60 mA, LIN
Physical Layer with Selectable Slew
rates, Timeout Watchdog with Periodic
Wake-up Feature, Normal/Stop Modes | 4 x 400 mΩ Half-Bridges with
Current Control;
1 x 600 mΩ High-side;
Switched 5.0 V Output (25 mA) | | | 3 x 2 Pin Hall Sensor Inputs with
Cyclic Wake-up Feature, Analog
Input with Current Source, V _{sup} ,
Chip Temp. and Current Sensing | Exposed Pad | Production
EVB | | MM908E626 | Stepper Motor Control, Quad Half-
Bridge with Embedded MCU and LIN | Voltage Regulator 5.0 V/60 mA, LIN
Physical Layer with Selectable Slew
rates. High Temperature use, T _J = 135×C | 4 x 400 mΩ Half-Bridges with Current Control; Switched 5.0 V Output (24 mA) | | | V _{sup} , Chip Temperature and
Current Sensing | 54-pin SOICW
Exposed Pad | Production
EVB ('625) | ### FREESCALE SEMICONDUCTOR POWER MANAGEMENT PRODUCTS The Power Management products portfolio provides solutions for Linear and Switching voltage regulators. Hot Swap control and Power over Ethernet devices for use in applications ranging from Consumer and Industrial to Automotive. SMARTMOS™ — Freescale Semiconductor SMARTMOS technology allows designers to interface high-precision components with the harsh automotive environment. For additional information, visit: Documentation, Tool, and Product Libraries www.freescale.com www.freescale.com/analog www.freescale.com/powermanagement www.freescale.com/productlongevity #### Power Management — Linear Regulators | Product | Description | Main Characteristics | Bus Type and
Standard | Operating
Voltage
(V) | Limit | rent
ation
idby
A)
Max | Other Features | Diagnostics ¹ | Protection Features | Packaging | Status | |---------|--|--|--------------------------|-----------------------------|-------|------------------------------------|---|--------------------------|--|--------------|-------------------| | MC3373 | Switch Mode Power Supply
with Multiple Linear
Regulators and Power
Sequencing | Step-down Switching regulator (2.0 A), with 3 Programmable Linear Regulators (15 mA, 15 mA, 15 mA) and two 5.0 V Sensor supplies (100 mA, 100 mA). | n/a | 4.5 to 28 | 150 | _ | Programmable voltage regulator, power sequencing, adjustable OSC - Switcher | None | Reverse Battery
Protect, Undervoltage
and Overvoltage
Lockout, Reset
monitor signals for
regulators (4) | 32-pin SOICW | Production
EVB | | MC33742 | System Basis Chip with
enhanced High-Speed CAN
(250k to 1Mbps) | | | | | | | | | | | | MC33889 | System Basis Chip with
Low-Speed Fault Tolerant
CAN | | | | | | | | | | | | MC33903 | System Basis Chip (SBC)-
Gen 2-with High Speed CAN
& LIN Interfaces | | | | | | | | | | | | MC33904 | System Basis Chip (SBC)-
Gen 2-with High Speed CAN
Interfaces | | | | | | | | | | | | MC33905 | System Basis Chip (SBC)-
Gen 2-with High Speed CAN
& LIN Interfaces | See Systen | n Basis Chip | | | | | | | | | | MC33907 | System Basis Chip (SBC)
with CAN, LIN, and SPI
Interfaces | | | | | | | | | | | | MC33908 | System Basis Chip (SBC)
with CAN, LIN, and SPI
Interfaces | | | | | | | | | | | | MC33909 | System Basis Chip (SBC) with CAN and LIN Interfaces | | | | | | | | | | | | MC33989 | System Basis Chip with
High-Speed CAN | | | | | | | | | | | ^{1.} Products available with SPI Control work with the KITUSBSPIEVME and the KITUSBSPIDGLEVME USB-SPI Interface Boards. ### Power Management — Switching Regulators | Product | Description | Main Characteristics | Operating Voltage (V) | Output Voltages | Protection Features | Packaging | Status | |---------|--|---|-----------------------|--------------------------------|--|--------------|-------------------| | | with Multiple Linear
Regulators and Power | Step-down Switching regulator (2.0 A), with 3 Programmable Linear Regulators (15 mA, 15 mA, 15 mA) and 2 x 5.0 V sensor supply (100 mA, 100 mA) | 4.5 to 28 | 2.0 to 3.3 V,
1.5 to 3.3 V, | Reverse Battery Protect,
Undervoltage and Overvoltage
Lockout, Reset monitor signals for
regulators (4) | 32-pin SOICW | Production
EVB | # Automotive Alternator Voltage Regulators | Product | Description | Main Characteristics | Bus Type | Operating
Voltage | Regulation
Voltage | Other Features | Diagnostics | Protection Features | Packaging | Status | | | |----------------|---|--|----------|----------------------|-----------------------|---|--
--|-----------|------------|--|--| | | regulate the output voltage of an
automotive alternator. It supplies a
current via a high-side MOSFET to
the excitation coil of the alternator | High-side field driver, Internal freewheeling diode, Up to 8.0 A rotor current (excitation coil), Load response control (LRC), LIN interface, Set point voltage selectable | LIN 1.3 | 8 to 27 | | Factory Selectable Features: LRC
Rate, LRC disable RPM, Self start,
Self start threshold, Alternator Pole
pairs, Thermal Fault Threshold,
Thermal Compensation Threshold,
Phase Sensitivity, Phase Start
Regulating RPM, Phase Stop
Regulating RPM | LIN communication
used for Electrical,
Mechanical and
Thermal fault reporting | Load Dump Protection,
Thermal protection,
Thermal compensation | Die | Production | | | | Note: Choice o | Note: Choice of 16 parametric fields may be specified by the customer. Contact sales for specific parameter combinations and part numbering. | | | | | | | | | | | | ### FREESCALE SEMICONDUCTOR AUTOMOTIVE SENSORS Freescale is a leading sensor supplier for automotive safety for airbags, Tire Pressure Monitoring Systems (TPMS), Electronic Stability Control (ESC) and for engine management with barometric absolute pressure (BAP) and manifold absolute pressure (MAP) applications.. Our Zero Defects process, Automotive Electronics Council (AEC) membership and functional safety with Safe Assure are critical in providing world-class quality solutions from entry-level to the high end. Applications — Freescale Semiconductor automotive sensors are designed for a variety of applications ranging from safety and performance to comfort and control. Our sensors are used in under-hood and in-cabin applications, and are compatible with Freescale analog product, power management and microcontroller families. For additional information, visit www.freescale.com/automotive #### Pressure Sensors | Product | Maximum
Pressure Rating (kPa) | Full Scale Span Voltage
(Typical) (Vdc) | Sensitivity
(mV/kPa) | Accuracy 0 °C to 85 °C
(% of V _{FSS}) | Packaging | Status | |----------|----------------------------------|--|-------------------------|--|--|------------------------| | MPX4115A | 115
115 | 4.6
4.4 | 46
38 | ±1.5
±1.5 | Super-Small Outline Package (SSOP)
SSOP | Available
Available | | MPX4250A | 250
250 | 4.7
4.7 | 20
19 | ±1.5
±1.4 | SSOP
SSOP | Available
Available | | MPXV5004 | 4 | 3.9 | 1000 | ±2.5 | SOP | Available | | MPXV5010 | 10 | 4.5 | 450 | ±5.0 | SOP | Available | | MPX5100 | 100 | 4.5 | 45 | ±2.5 | 6-pin unibody package | Available | | MPX5700 | 700 | 4.5 | 6.4 | ±2.5 | 6-pin unibody package | Available | | MPX5999 | 1000 | 4.5 | 4.5 | ±2.5 | 6-pin unibody package | Available | | MPXH6101 | 102 | 4.6 | 54 | ±1.8 | SSOP | Available | | MPXV7007 | 7 | 4.0 | 286 | ±5.0 | SOP | Available | | MPXV7025 | 25 | 4.5 | 90 | ±5.0 | SOP | Available | #### Barometric Absolute Pressure (BAP) and Manifold Absolute Pressure (MAP) Sensors | Product | Maximum
Pressure Rating (kPa) | Full Scale Span Voltage
(Typical) (Vdc) | Sensitivity
(mV/kPa) | Accuracy 0 °C to 85 °C
(% of V _{FSS}) | Packaging | Status | |------------|----------------------------------|--|-------------------------|--|------------------------------------|-----------| | MPXH6101 | 102 | 4.6 | 54 | ±1.8 | Super-Small Outline Package (SSOP) | Available | | MPXA6115 | 115 | 4.6 | 45.9 | ±1.5 | SOP | Available | | MPXAZ6115A | 115 | 4.5 | 45.9 | ±1.5 | SOP | Available | | MPXHZ6115A | 115 | 4.5 | 45.9 | ±1.5 | SSOP | Available | | MPXH6250A | 250 | 4.7 | 20 | ±1.5 | SSOP | Available | | MPXHZ6250 | 250 | 4.7 | 20 | ±1.5 | SSOP | Available | | MPXH6300 | 300 | 4.7 | 16 | ±1.8 | SSOP | Available | | MPXH6400 | 400 | 4.7 | 12 | ±1.5 | SSOP | Available | | MPXHZ6400 | 400 | 4.7 | 12 | ±1.5 | SSOP | Available | ### Inertial Sensors¹ | Product | Sensing
Direction | Acceleration (±g) | Sensitivity
(mV/V/g) | Sensitivity
(count/g) | Temperature
Range | Roll-Off
Frequency | Analog | Digital | Communication | Packaging | Status | |------------------|----------------------|-------------------|-------------------------|--------------------------|----------------------|-----------------------|----------|---------|---------------|-------------------|-----------| | Analog Sensors: | • | | | | | | • | • | | | | | MMA1270KEG | Z | 2.5 g | 150 | _ | -40 °C to +105 °C | 50 Hz | Yes | _ | _ | 16-pin SOIC | Available | | MMA1250KEG | Z | 5 g | 80 | _ | -40 °C to +105 °C | 50 Hz | Yes | _ | _ | 16-pin SOIC | Available | | MMA1220KEG | Z | 8 g | 50 | _ | -40 °C to +85 °C | 250 Hz | Yes | _ | _ | 16-pin SOIC | Available | | MMA2240KEG | Х | 7 g | 300 | _ | -40 °C to +125 °C | 50 Hz | Yes | _ | _ | 16-pin SOIC | Available | | MMA2244KEG | Х | 20 g | 100 | _ | -40 °C to +125 °C | 400 Hz | Yes | _ | _ | 16-pin SOIC | Available | | MMA2201KEG | Х | 40 g | 10 | _ | -40 °C to +125 °C | 400 Hz | Yes | _ | _ | 16-pin SOIC | Available | | MMA2202KEG | Х | 50 g | 8 | _ | -40 °C to +125 °C | 400 Hz | Yes | _ | _ | 16-pin SOIC | Available | | MMA2204KEG | Х | 100 g | 4 | _ | -40 °C to +125 °C | 400 Hz | Yes | _ | _ | 16-pin SOIC | Available | | MMA2300KEG | Х | 250 g | 1.6 | _ | -40 °C to +125 °C | 400 Hz | Yes | _ | _ | 16-pin SOIC | Available | | MMA2301KEG | Х | 200 g | 2 | _ | -40 °C to +125 °C | 400 Hz | Yes | _ | _ | 16-pin SOIC | Available | | MMA3201KEG | XY | 40 g | 10 | _ | -40 °C to +125 °C | 400 Hz | Yes | _ | _ | 20-pin SOIC | Available | | MMA3221KEG | XY | 50/20 g | 40/100 | _ | -40 °C to +125 °C | 400 Hz | Yes | _ | _ | 20-pin SOIC | Available | | MMA3204KEG | XY | 100/30 g | 4/13 | _ | -40 °C to +125 °C | 400 Hz | Yes | _ | _ | 20-pin SOIC | Available | | MMA3202KEG | XY | 100/50 g | 4/8 | _ | -40 °C to +125 °C | 400 Hz | Yes | _ | _ | 20-pin SOIC | Available | | Digital Sensors: | | 1 | | • | | 1 | | 1 | | 1 | | | MMA5106KW | Z | 60 g | _ | 8 | -40 °C to +125 °C | 400 Hz | _ | Yes | PSI5 | 16-pin QFN | Available | | MMA5112KW | Z | 120 g | _ | 4 | -40 °C to +125 °C | 400 Hz | _ | Yes | PSI5 | 16-pin QFN | Available | | MMA5124KW | Z | 240 g | _ | 2 | -40 °C to +125 °C | 400 Hz | _ | Yes | PSI5 | 16-pin QFN | Available | | MMA5148KW | Z | 480 g | _ | 1 | -40 °C to +125 °C | 400 Hz | _ | Yes | PSI5 | 16-pin QFN | Available | | MMA5206KW | Х | 60 g | _ | 8 | -40 °C to +125 °C | 400 Hz | _ | Yes | PSI5 | 16-pin QFN | Available | | MMA5212KW | Х | 120 g | _ | 4 | -40 °C to +125 °C | 400 Hz | _ | Yes | PSI5 | 16-pin QFN | Available | | MMA5224KW | Х | 240 g | _ | 2 | -40 °C to +125 °C | 400 Hz | _ | Yes | PSI5 | 16-pin QFN | Available | | MMA5248KW | Х | 480 g | _ | 1 | -40 °C to +125 °C | 400 Hz | _ | Yes | PSI5 | 16-pin QFN | Available | | MMA2612KW | Х | 125 g | _ | 4.096 | -40 °C to +125 °C | 400 Hz | _ | Yes | DSI | 16-pin QFN | Available | | MMA1618KW | Z | 187 g | _ | 2.731 | -40 °C to +125 °C | 400 Hz | _ | Yes | DSI | 16-pin QFN | Available | | MMA2725W | Х | 250 g | _ | 2 | -40 °C to +125 °C | 400 Hz | _ | Yes | DSI3 | QFN 6x6 mm 16-pin | Available | | MMA2712W | Х | 125 g | _ | 4 | -40 °C to +125 °C | 400 Hz | <u> </u> | Yes | DSI3 | Self Test | Available | | MMA2737W | Х | 375 g | _ | 1.3 | -40 °C to +125 °C | 400 Hz | _ | Yes | DSI3 | Self Test | Available | | MMA2718W | Х | 187 g | _ | 2.7 | -40 °C to +125 °C | 400 Hz | <u> </u> | Yes | DSI3 | Self Test | Available | | MMA2702W | Х | 25 g | _ | 20.4 | -40 °C to +125 °C | 400 Hz | _ | Yes | DSI3 | Self Test | Available | | MMA1725W | Z | 250 g | _ | 2 | -40 °C to +125 °C | 400 Hz | | Yes | DSI3 | Self Test | Available | ^{1.} Freescale Semiconductor reserves the right to modify product specifications and/or introduction dates without any further notice. The product parameters are typical values at V_{DD} = 5.0 V and T = 25 °C, unless otherwise specified. Additional sensitivity and expanded temperature ranges are available upon request. Consult your Freescale Semiconductor sales representative ### Inertial Sensors¹ (continued) | Product | Sensing
Direction | Acceleration (±g) | Sensitivity
(mV/V/g) | Sensitivity
(count/g) | Temperature
Range | Roll-Off
Frequency | Analog | Digital | Communication | Packaging | Status | |------------|----------------------|-------------------|-------------------------|--------------------------|----------------------|-----------------------|--------|---------|---------------|------------|-----------| | MMA6255KEG | XY | 50/50 g | _ | 9.76 | -40°C to +125 °C | 400 Hz | _ | Yes | SPI | 16-pin QFN | Available | | MMA6852KW | Х | 35 g | _ | 13.947 | -40°C to +105 °C | 400 Hz | _ | Yes | SPI | 16-pin QFN | Available | | MMA6854KW | Х | 75 g | _ | 6.51 | -40°C to +105 °C | 400 Hz | _ | Yes | SPI | 16-pin QFN | Available | | MMA6811KW | XY | 60/25 g | _ | 8.192/20.479 | -40°C to +105 °C | 400 Hz | _ | Yes | SPI | 16-pin QFN | Available | | MMA6813KW | XY | 50/50 g | _ | 9.766/9.766 | -40°C to +105 °C | 400 Hz | _ | Yes | SPI | 16-pin QFN | Available | | MMA6821KW | XY | 120/25 g | _ | 4.096/20.479 | -40°C to +105 °C | 400 Hz | _ | Yes | SPI | 16-pin QFN | Available | | MMA6823KW | XY | 120/60 g | _ | 4.096/8.192 | -40°C to +105 °C | 400 Hz | _ | Yes | SPI | 16-pin QFN | Available | | MMA6826KW | XY | 60/60 g | _ | 8.192/8.192 | -40°C to +105 °C | 400 Hz | _ | Yes | SPI | 16-pin QFN | Available | | MMA6852KW | XY | 120/120 g | _ | 4.096/4.096 | -40°C to +105 °C | 400 Hz | _ | Yes | SPI | 16-pin QFN | Available | | MMA6900KQ | XY | 3.5 g | _ | 291.5 | -40°C to +105 °C | 50 Hz | _ | Yes | SPI | 16-pin QFN | Available | | MMA6901KQ | XY | 5g | _ | 203.6 | -40°C to +105 °C | 50 Hz | _ | Yes | SPI
| 16-pin QFN | Available | ^{1.} Freescale Semiconductor reserves the right to modify product specifications and/or introduction dates without any further notice. The product parameters are typical values at V_{DD} = 5.0 V and T = 25 °C, unless otherwise specified. Additional sensitivity and expanded temperature ranges are available upon request. Consult your Freescale Semiconductor sales representative. # Tire Pressure Monitoring Systems | Product | Flash | RF Transmitter
Frequency | Supported | Clock
Type | Timer | Pressure Range
Pressure Sensor | Accuracy
(0 °C <=T _A <=70
°C) | °C) | X-axis Offset
Accuracy
(0 °C <=T _A <=70
°C) | Package | Temperature
Range | Status | Description | |---------------|-------|-----------------------------|------------------------|---------------|------------------|-----------------------------------|--|-----|---|-------------|----------------------|---------------|---| | FXTH870502DT1 | 16 kB | | ASK and FSK Modulation | | 2-CH, 16-bit PWM | | +/-7 kPa | ±6g | | | | · | Automotive Tire Pressure
Monitoring Sensor (with Z-
Axis Accelerometer) | | FXTH870511DT1 | 16 kB | | ASK and FSK Modulation | | 2-CH, 16-bit PWM | | +/-7 kPa | ±6g | 3 | | | , | Automotive Tire Pressure
Monitoring Sensor (with
XZ-Axis Accelerometer) | | FXTH8705116T1 | 16 kB | 315/434 MHz | ASK and FSK Modulation | OSC | 2-CH, 16-bit PWM | | +/-7 kPa | ±3g | ±3g | 7x7 QFN FAM | | · | Automotive Tire Pressure
Monitoring Sensor (with
XZ-Axis Accelerometer) | | FXTH870902DT1 | 16 kB | 315/434 MHz | ASK and FSK Modulation | OSC | 2-CH, 16-bit PWM | | +/-10 kPa | ±6g | NA | 7x7 QFN FAM | | · | Automotive Tire Pressure
Monitoring Sensor (with Z-
Axis Accelerometer) | | FXTH8709026T1 | 16 kB | 315/434 MHz | ASK and FSK Modulation | | 2-CH, 16-bit PWM | | +/-10 kPa | ±3g | NA | | | , | Automotive Tire Pressure
Monitoring Sensor (with Z-
Axis Accelerometer) | | FXTH870911DT1 | 16 kB | 315/434 MHz | ASK and FSK Modulation | OSC | 2-CH, 16-bit PWM | 100 - 900 kPA | +/-10 kPa | ±5g | ±4g | 7x7 QFN FAM | -40 to 125 °C | In production | Automotive Tire Pressure
Monitoring Sensor (with
XZ-Axis Accelerometer) | | FXTH8709126T1 | 16 kB | 315/434 MHz | ASK and FSK Modulation | OSC | 2-CH, 16-bit PWM | 100 - 900 kPA | +/-10 kPa | ±3g | ±3g | 7x7 QFN FAM | -40 to 125 °C | In production | Automotive Tire Pressure
Monitoring Sensor (with
XZ-Axis Accelerometer) | | FXTH870912DT1 | 16 kB | 315/434 MHz | ASK and FSK Modulation | osc | 2-CH, 16-bit PWM | 100 - 900 kPA | +/-10 kPa | ±6g | ±4g | 7x7 QFN FAM | -40 to 125 °C | In production | Automotive Tire Pressure
Monitoring Sensor (with
XZ-Axis Accelerometer) | | FXTH8709226T1 | 16 kB | 315/434 MHz | ASK and FSK Modulation | osc | 2-CH, 16-bit PWM | 100 - 900 kPA | +/-10 kPa | ±3g | ±3g | 7x7 QFN FAM | -40 to 125 °C | In production | Automotive Tire Pressure
Monitoring Sensor (with
XZ-Axis Accelerometer) | | FXTH871502DT1 | 16 kB | 315/434 MHz | ASK and FSK Modulation | OSC | 2-CH, 16-bit PWM | 100 - 1500 kPA | +/-20 kPa | ±6g | NA | 7x7 QFN FAM | -40 to 125 °C | In production | Automotive Tire Pressure
Monitoring Sensor (with Z-
Axis Accelerometer) | | FXTH8715026T1 | 16 kB | 315/434 MHz | ASK and FSK Modulation | OSC | 2-CH, 16-bit PWM | 100 - 1500 kPA | +/-20 kPa | ±3g | ±3g | 7x7 QFN FAM | -40 to 125 °C | In production | Automotive Tire Pressure
Monitoring Sensor (with Z-
Axis Accelerometer) | | FXTH8715027T1 | 16 kB | 315/434 MHz | ASK and FSK Modulation | osc | 2-CH, 16-bit PWM | 100 - 1500 kPA | +/-17 kPa | ±3g | NA | 7x7 QFN FAM | -40 to 125 °C | | Automotive Tire Pressure
Monitoring Sensor (with Z-
Axis Accelerometer) | | FXTH871511DT1 | 16 kB | 315/434 MHz | ASK and FSK Modulation | | 2-CH, 16-bit PWM | | +/-20 kPa | ±5g | ±4g | 7x7 QFN FAM | -40 to 125 °C | In production | Automotive Tire Pressure
Monitoring Sensor (with
XZ-Axis Accelerometer) | | FXTH8715116T1 | 16 kB | 315/434 MHz | ASK and FSK Modulation | OSC | 2-CH, 16-bit PWM | 100 - 1500 kPA | +/-20 kPa | ±3g | ±3g | 7x7 QFN FAM | -40 to 125 °C | In production | Automotive Tire Pressure
Monitoring Sensor (with
XZ-Axis Accelerometer) | | FXTH8715117T1 | 16 kB | 315/434 MHz | ASK and FSK Modulation | OSC | 2-CH, 16-bit PWM | 100 - 1500 kPA | +/-17 kPa | ±3g | ±3g | 7x7 QFN FAM | -40 to 125 °C | In production | Automotive Tire Pressure
Monitoring Sensor (with
XZ-Axis Accelerometer) | # FREESCALE SEMICONDUCTOR ACCESS AND REMOTE CONTROL PRODUCTS For additional information, visit: Documentation, Tool, and Product Libraries www.freescale.com Automotive Home Page www.freescale.com/automotive #### GPS Downconverter | Product | RF Freq (MHz) | Supply Voltage
Range (Vdc) | Supply Current (Typ)
(mA) | Standby Current
(mA) | Conversion Gain
(typ) (dB) | Packaging | System
Applicability | Documentation | |------------|---------------|-------------------------------|------------------------------|-------------------------|-------------------------------|------------------------------|-------------------------|---------------| | MRFIC1505A | 1575.42 | 2.7 to 3.3 | 28 | 3 | 105 | 48-pin LQFP
(Case No 932) | GPS | MRFIC1505 | ### FREESCALE SEMICONDUCTOR LOCAL INTERCONNECT NETWORK (LIN) SOLUTIONS Freescale Semiconductor and LIN—As the only semiconductor member of the LIN consortium, Freescale Semiconductor has the industry's most advanced range of components, software, tools, and support available. Cost Benefits from LIN—A LIN sub-bus system uses a single-wire implementation and self-synchronization, without a crystal or ceramic resonator, in the slave node. With these cost benefits, high-end comfort and convenience features no longer need to be limited only to top-of-the-line cars. Embedded Controllers—Since the LIN sub-bus is based on common UART/SCI interface hardware, the 8-bit 68HC08, and 16-bit S12 and S12X Families provide the industry's broadest range of performance and features, affording designers the freedom to choose parts ideally suited to their needs. Advanced Integration with LIN—Microcontrollers will evolve in the LIN environment to integrate the voltage regulator, physical interface, and high-voltage I/O to provide space, cost, and reliability benefits. Freescale Semiconductor solutions provide this capability today. Software for LIN—Freescale Semiconductor is working closely with the leading LIN tool supplier to ensure a first class, seamless development and debug environment for Freescale Semiconductor LIN products. For additional information, visit: Local Interconnect Network (LIN) Home Page www.lin-subbus.org Automotive Home Page #### LIN Software Products | Product | 68HC05 | 68HC08 | S08 | S12 | S12X | |------------------|-----------|-----------|-----------|-----------|-----------| | LIN master | n/a | Available | Available | Available | Available | | LIN slave | Available | Available | Available | Available | Available | | Operating system | n/a | Available | Available | Available | Available | #### LIN Physical Layer Transceivers | Product | Description | Main Characteristics | Bus Type
and Stan- | Protection
Features | Operating Voltage | Current Limitation
Standby | Other
Features | Control and
Status | Packaging | Status | |---------|-----------------------------------|---|-----------------------|------------------------|-------------------|-------------------------------|-------------------|-----------------------|-----------|--------| | | | | dard | reatures | (V) | (μ A) | reatures | Reporting | | | | | | | | | | Тур Мах | | | | | | MC33399 | See Network Transceivers — LIN, I | SO-9141, J-1850 Physical Interface Components | | | | | | | | | | MC33661 | See Network Transceivers — LIN, I | SO-9141, J-1850 Physical Interface Components | | | | | | | | | | MC33662 | See Network Transceivers — LIN, I | SO-9141, J-1850 Physical Interface Components | | | | | | | | | # MCU CHOICES BY APPLICATION | Application | Microcontroller | |--|---| | Transmission, Engine Control and Management Interfaces | MPC5674F, MPC5673F, MPC563xM, MPC5644A, MPC5643A, MPC5642A, MPC5746M, MPC5777M, S12XE, S12P, S12G | | Hybrid and Electric Auxiliaries | MPC5674F, MPC5673F, MPC563xM, MPC5644A, MPC5643A, MPC5642A, MPC5744P, MPC5746G, MPC5747C, MPC5747G, MPC5748C, MPC5748G, MPC5746M, S12G | | Watchdog | S12G, S12P, S08QD4, S08SG, S08AW, S08SC4, S08RN | | High Temperature | MPC5744P, S12G , S08SG | | Body Control Module and Gateway | MPC5668x, MPC560xB, MPC560xD, MPC564xB/C, MPC5746G, MPC5747C, MPC5747G, MPC5748C, MPC5748G, S12G, S12XE, KEA | | HVAC, Lighting, Seats, Window Lift, Doors, Sun Roof | MPC560xB, MPC560xD, S12XS, S12P, S12G, S12VR, S12ZVFP, S08D, S08AW, S08EL, S08SG, S08SL, S08MP16, S08SC4, S08RN, KEA | | Body Motor Control | S12G, S12VR, S08MP16, S08RN, KEA | | Infotainment | all i.MX, SVFxxxR, MAC57D5xx, KEA | | Telematics | i.MX251, i.MX281, i.MX53, i.MX351, i.MX 6S1, i.MX 6U1, MAC57D5xx | | Instrument Cluster | MPC560xS, i.MX534, i.MX 6S1, i.MX 6U1, SVFxxxR, S12H, S12XH, S12XHY, S12ZVFP, S12ZVH, S12ZVY S08LG, MAC57D5xx | | Head-Up-Display | MAC57D5xx | | Multi-function Display | MAC57D5xx | | Braking Systems | MPC564xL, MPC560xP, MPC5744P, \$12XE, \$12XS , KEA | | Electronic Power Steering | MPC564xL, MPC560xP, MPC5744P, \$12G | | Tire Pressure Monitoring System | MPC560xB, MPC5668G, S12XE , S12XS , <i>S08D</i> , <i>S08RN</i> | | Semi-Active
Suspension | MPC564xL, MPC5744P | | Airbag | MPC560xP, MPC5744P, S12XF, S12XS , S08SG, KEA | | Electronic Stability Control | MPC564xL, MPC560xP, MPC5744P | | Lane Departure | i.MX534, MPC567xK, i.MX 6S4, i.MX 6U4, i.MX 6D4, i.MX 6Q4, MPC577xK | | Advanced Cruise Control | MPC564xL, MPC567xK, MPC57744P, MPC577xK, SCP2201, SCP2207 | | Precrash, Blindspot Detection, Backup Warning | MPC564xL, MPC567xK, MPC5744P, MPC5604E, MPC577xK, S12ZVFP , S08RN | | Ethernet | MPC560xS, MPC5668x, MPC5746G, MPC5747C, MPC5747G, MPC5748C, MPC5748G, MPC5746M, MPC577xK, all i.MX | | FlexRay (tm) | MPC5668x, MPC564xL, MPC560xP, MPC5674F, MPC5673F, MPC5644A, MPC5643A, MPC5642A, MPC5744P, MPC5748G, MPC5747C, MPC5747G, MPC5748C, MPC5748G, MPC5746M MPC5642A, MPC577xK, S12XF | | CAN | MPC5644A, MPC5643A, MPC5642A, MPC5744P, MPC5746G, MPC5747C, MPC5747G, MPC5748C, MPC5748G, MPC5746M, MPC577xK all S12(X), S08D, KEA | | LIN | MPC5644P, MPC5746G, MPC5747C, MPC5747G, MPC5748C, MPC5748G, MPC577xK, S12P, S12XS, S12XE, S12G, S12X, S12VR64 , <i>S08SG, S08EL, S08AW, S08D, S08SL, S08SC4, S08RN</i> , KEA | | | NOTE: 32-bit in plain, 16-bit in bold, 8-bit in italics | #### S08 8 - BIT MICROCONTROLLERS S08 Core Technology — Optimized for extreme operating economy with a number of low-power options, Freescale's S08 core is particularly attractive for automotive applications. Multiple stop modes, along with wait and standby modes, will help achieve new thresholds in low-power performance under a variety of operating conditions. The S08 core allows efficient, compact, modular coding with full 16-bit stack-pointer and stack-relative addressing, which permit various instruction sizes and enable memory interface in multiple mechanisms and addressing modes. The object code is also compatible with Freescale's legacy HC05 and HC08 cores. S08 Family Benefits — Freescale's S08 families help save cost, reduce board space, increase performance and improve quality through extensive on-chip integration. No longer are external components required, such as an external crystal, LVI circuit, voltage regulator, I/O mux, watchdog circuit or EEPROM. With on-chip emulation and debug, changes can be made in application and in real-time, reducing development time. Also, with the S08 CPU running at 40 MHz, MCUs are able to quickly accomplish a task and go back to sleep. Quick execution translates into power savings, which allows customers to add more embedded content while staying within their power budgets. #### 8-bit S08 MCUs | Device | Bus
Frequency | Flash | RAM | EEPRO
M | CAN | UART | SPI | I ² C | SLIC | Analog (ADC) | Timer | Clock | Additional Features | Operating
Voltage | Temp.
Range ¹ | Package
Options | In
Produc-
tion | |--------|------------------|-----------------|---------------|----------------|-----|-------|------------|------------------|------|-------------------------------|---|-------|---|----------------------|-----------------------------|--|-----------------------| | S08DZ | 200 MHz | Up to
128 KB | Up to 8
KB | Up to
2 KB | 1 | 2xSCI | Up to
2 | Up to
2 | | Up to 24-CH, 12-bit,
2 com | Up to 12-CH | MCG | Watchdog OSC/Timer, COP,
BDM, Temp Sensor | 2.7 to 5.5 | C, V, M | 32 LQFP,
48 LQFP,
64 LQFP,
100 LQFP | V | | S08DV | 200 MHz | Up to
128 KB | Up to 6
KB | _ | 1 | 2xSCI | Up to
2 | Up to
2 | | Up to 24-CH, 12-bit,
2 com | Up to 12-CH | MCG | Watchdog OSC/Timer, COP,
BDM, Temp Sensor | 2.7 to 5.5 | C, V, M | 32 LQFP,
48 LQFP,
64 LQFP,
100 LQFP | V | | S08DN | 200 MHz | Up to
60 KB | Up to 2
KB | Up to
2 KB | | 1xSCI | 1 | 1 | | Up to 16-CH, 12-bit,
2 com | Up to 6-CH + 2-
CH | MCG | Watchdog OSC/Timer, COP,
BDM, Temp Sensor | 2.7 to 5.5 | C, V, M | 32 LQFP,
48 LQFP,
64 LQFP | √ | | S08AW | 200 MHz | Up to
60 KB | Up to 2
KB | _ | | 2xSCI | 1 | 1 | | Up to 16-CH, 10-bit | Up to 8-CH | ICG | KBI, ICE, BDM, Temp Sensor | 2.7 to 5.5 | C, V, M | 48 QFN, 44
QFP, 32
LQFP, 64
QFP, 64
LQFP, 44
LQFP | V | | S08EL | 200 MHz | Up to
32 KB | 1 KB | Up to 512 B | | 1xSCI | 1 | 1 | 1 | Up to 16-CH, 10-bit,
2 com | 4-CH + 2-CH | ICS | LIN Auto-Baud/Synch,
Watchdog OSC/Timer, BDM,
Temp Sensor | 2.7 to 5.5 | C, V, M | 28 TSSOP,
20 TSSOP | V | | S08SL | 200 MHz | Up to
16 KB | 512 B | Up to
256 B | | 1xSCI | 1 | 1 | 1 | Up to 16-CH, 10-bit,
1 com | 2-CH + 2-CH | ICS | LIN Auto-Baud/Synch,
Watchdog OSC/Timer, BDM,
Temp Sensor | 2.7 to 5.5 | C, V, M | 28 TSSOP,
20 TSSOP | V | | S08SG | 200 MHz | Up to
32 KB | Up to 1
KB | _ | | 1xSCI | 1 | 1 | | Up to 16-CH, 10-bit,
1 com | Up to 2-CH + 2-
CH | ICS | Watchdog OSC/Timer, COP,
BDM, POR, KBI, Temp Sensor | 2.7 to 5.5 | C, V, M, W | 28 TSSOP,
20 TSSOP,
16 TSSOP,
8 SOIC | V | | S08SC4 | 200 MHz | 4 KB | 256 B | _ | | 1xSCI | 1 | 1 | _ | Up to 8-CH, 10-bit | Up to 2-CH + 2-
CH | ICS | Watchdog OSC/Timer, COP,
BDM, Temp Sensor | 4.5 to 5.5 | C, V, M | 16 TSSOP | V | | S08LG | 200 MHz | Up to
32 KB | 2 KB | _ | | 1xSCI | 1 | 1 | | Up to 16-CH, 12-bit | Up to 2-CH + 6-
CH | ICS | Up to 37x8/41x4 LCD Driver,
Watchdog OSC/Timer, RTC,
BDM, Temp Sensor | 2.7 to 5.5 | C, V | 80 LQFP,
64 LQFP,
48 LQFP | V | | S08MP | 200 MHz | 16 KB | 1 KB | _ | | 2xSCI | 1 | 1 | _ | 13-CH, 12-bit, 3 com | 6-CH + 2-CH,
16-bit Flex
Timer w/PWM
Functions | ICS | MTIM, RTC, COP, CRC, BDM, 5-bit DAC (3x), Temp Sensor | 2.7 to 5.5 | C, V, M | 48 LQFP | V | #### 8-bit S08 MCUs (continued) | Device | Bus
Frequency | Flash | RAM | EEPRO
M | CAN | UART | SPI | I ² C | SLIC | Analog (ADC) | Timer | Clock | Additional Features | Operating
Voltage | Temp.
Range ¹ | Package
Options | In
Produc-
tion | |--------|------------------|----------------|---------------|----------------|-----|-------|------------|------------------|------|---------------------|------------------------------|-------|--|----------------------|-----------------------------|---------------------------------------|-----------------------| | S08RN | 200 MHz | Up to
60 KB | Up to 4
KB | Up to
256 B | | 1xSCI | 1 | 1 | | Up to 16-CH, 12-bit | Up to 6-CH + 2-
CH + 2-CH | ICS | TSI, Watchdog, BDM, RTC
Analog Comparator | 2.7 to 5.5 | C, V, M | 64, 48, 32
LQFP
20, 16
TSSOP | V | | S08QD | 8 MHz | Up to 4
KB | Up to 256 B | _ | | Up to | Up to
2 | Up to
1 | _ | 4-CH, 10-bit | 2-CH + 1-CH | ICS | Watchdog OSC/Timer, BDM,
Temp Sensor | 2.7 to 5.5 | C, V, M | 8 SOIC | V | ^{1.} C = -40 °C to +85 °C, V = -40 °C to +105 °C, M = -40 °C to +125 °C, J = -40 °C to +140 °C, W = -40 °C to +150 °C ### S12 AND S12X 16-BIT MICROCONTROLLERS Freescale has a wide range of 16-bit products to offer automotive designers. S12 and S12X MCUs provide high-performance 16-bit control functionality. The S12X MCUs feature the innovative XGATE module, designed specifically to handle interrupt events without CPU intervention. As a result, the S12X controller has the high-performance capabilities you would normally expect of a 32-bit controller. S12 MagniV mixed-signal MCUs extend the S12 portfolio and offer the right blend of digital programmability and high precision analog in highly-integrated packages. For additional information, visit: Freescale Semiconductor Documentation, Tool, and Product Libraries www.freescale.com Automotive Home Page www.freescale.com/automotive 16-bit Microcontrollers Home Page #### S12 and S12X Families | Device | Bus
Fre-
quency | Flash | RAM | Data
Flash | EEPROM | XGATE | MPU | ECC | FlexRa
y | CAN | SCI | SPI | I ² C | Analog (ADC) | PWM | Motor | SSD | ECT | Timer | PIT | LCD | KWU | EBI | Operat-
ing
Voltage | Temp.
Range ¹ | Package
Options | In
Produc-
tion | |-----------|-----------------------|--------|-------|---------------|--------|-------|----------|----------|-------------|-----|-----|-----|------------------|--------------------|-----------------|-------|-----|-----------------|------------------|---------------|-----|-----|----------|---------------------------|-----------------------------|--------------------------------------|-----------------------| | S12XEP100 | 50 MHz | 1 MB | 64 KB | _ | 4 KB | 1 | 1 | V | | 5 | 8 | 3 | 2 | 2x16-CH,
12-bit | 8-CH,
8-bit | _ | _ | 8-CH,
16-bit | 8-CH,
16-bit | 8-CH | _ | 25 | 1 | 3.13 to 5.5 | C, V, M | 112 LQFP,
144 LQFP,
208 MAPBGA | 1 | | S12XEP768 | 50 MHz | 768 KB | 48 KB | _ | 4 KB | 1 | 1 | V | | 5 | 8 | 3 | 2 | 2x16-CH,
12-bit | 8-CH,
8-bit | _ | _ | 8-CH,
16-bit | 8-CH,
16 -bit | 8-CH | _ | 25 | 1 | 3.13 to 5.5 | C, V, M | 112 LQFP,
144 LQFP,
208 MAPBGA | 1 | | S12XEQ512 | 50 MHz | 512 KB | 32 KB | _ | 4 KB | 1 | 1 | V | | 4 | 6 | 3 | 2 | 2x12-CH,
12-bit | 8-CH,
8-bit | _ | _ | 8-CH,
16-bit | 8-CH,
16-bit | 8-CH | _ | 25 | 1 | 3.13 to 5.5 | C, V, M | 80 LQFP,
112 LQFP,
144 LQFP | 1 | | S12XEQ384 | 50 MHz | 384 KB | 24 KB | _ | 4 KB | 1 | 1 | V | | 4 | 4 | 3 | 1 | 2x12-CH,
12-bit | 8-CH,
8-bit | _ | _ | 8-CH,
16-bit | _ | 4-CH | _ | 25 | 1 | 3.13 to 5.5 | C, V, M | 80 LQFP,
112 LQFP,
144 LQFP | 1 | | S12XET512 | 50 MHz | 512 KB | 32 KB | _ | 4 KB | 1 | 1 | V | | 3 | 6 | 3 | 2 | 24-CH,
12-bit | 8-CH,
8-bit | _ | _ | 8-CH,
16-bit | _ | Up to
4-CH | _ | 25 | 1 | 3.13 to 5.5 | C, V, M | 80 QFP,
112 LQFP,
144 LQFP | 1 | | S12XET384 | 50 MHz | 384 KB | 24 KB | _ | 4 KB | 1 | 1 | V | | 3 | 6 | 3 | 2 | 24-CH,
12-bit | 8-CH,
8-bit | _ | _ | 8-CH,
16-bit | _ | Up to
4-CH | _ | 25 | 1 | 3.13 to 5.5 | C, V, M | 80 QFP,
112 LQFP,
144 LQFP | 1 | | S12XET256 | 50
MHz | 256 KB | 16 KB | - | 4 KB | 1 | 1 | V | | 3 | 4 | 3 | 1 | 2x12-CH,
12-bit | 8-CH,
8-bit | _ | _ | 8-CH,
16-bit | - | 4-CH | | 25 | √ | 3.13 to 5.5 | C, V, M | 80 LQFP,
112 LQFP,
144 LQFP | V | | S12XEG384 | 50 MHz | 384 KB | 24 KB | _ | 4 KB | 1 | 1 | V | | 2 | 6 | 3 | 2 | 24-CH,
12-bit | 8-CH,
8-bit | _ | _ | 8-CH,
16-bit | _ | Up to
4-CH | _ | 25 | 1 | 3.13 to 5.5 | C, V, M | 80 QFP,
112 LQFP,
144 LQFP | 1 | | S12XEG256 | 50 MHz | 256 KB | 16 KB | _ | 4 KB | 1 | √ | 1 | | 2 | 4 | 3 | 1 | 16-CH,
12-bit | 8-CH,
8-bit | _ | _ | 8-CH,
16-bit | _ | Up to
4-CH | _ | 25 | √ | 3.13 to 5.5 | C, V, M | 112 LQFP | V | | S12XEG128 | 50 MHz | 128 KB | 12 KB | _ | 2 KB | 1 | V | V | | 2 | 2 | 2 | 1 | 16-CH,
12-bit | 8-CH,
8-bit | _ | _ | 8-CH,
16-bit | _ | Up to
2-CH | _ | 25 | V | 3.13 to 5.5 | C, V, M | 80 QFP,
112 LQFP | V | | S12XEA256 | 54 MHz | 256 KB | 16 KB | _ | 4 KB | 1 | V | V | | 3 | 2 | 3 | 1 | 8-CH,
12-bit | 8-CH,
8-bit | _ | _ | 8-CH,
16-bit | _ | Up to
8-CH | _ | 25 | V | 3.13 to 5.5 | C, V, M | 80 QFP | V | | S12XEA128 | 50 MHz | 128 KB | 12 KB | _ | 2 KB | 1 | V | V | | 2 | 2 | 2 | 1 | 12-CH,
12-bit | 8-CH,
8-bit | _ | _ | 8-CH,
16-bit | _ | Up to
8-CH | _ | 25 | 1 | 3.13 to 5.5 | C, V, M | 80 QFP | V | | S12XES384 | 55 MHz | 384 KB | 24 KB | _ | 4 KB | 1 | 1 | V | | 1 | 2 | 1 | 1 | 16-CH,
12-bit | 8-CH,
8-bit | _ | _ | 8-CH,
16-bit | - | Up to
8-CH | _ | 25 | 1 | 3.13 to 5.5 | C, V, M | 80 QFP,
112 LQFP,
144 LQFP | 1 | | S12GA128 | 25 mhZ | 128 KB | 8 KB | _ | 4 KB | _ | _ | V | _ | 1 | 3 | 3 | _ | 12-CH, 12-bit | 8-CH, 8-
bit | _ | _ | _ | 8-CH, 16-bit | | _ | 16 | _ | 3.13 to 5.5 | C, V, M | 48 LQFP,
64 LQFP, 100
LQFP, | 1 | | S12GA96 | 25 mhZ | 96 KB | 8 KB | | 4 KB | _ | | √ | _ | 1 | 3 | 3 | _ | 12-CH, 12-bit | 8-CH, 8-
bit | _ | _ | _ | 8-CH, 16-bit | 1 | | 16 | I | 3.13 to 5.5 | C, V, M | 48 LQFP,
64 LQFP, 100
LQFP, | 1 | | S12GA64 | 25 mhZ | 64 KB | 4 KB | _ | 2 KB | _ | _ | √ | _ | 1 | 2 | 2 | _ | 12-CH, 12-bit | 6-CH, 8-
bit | _ | _ | _ | 6-CH, 16-bit | | _ | 16 | | 3.13 to 5.5 | C, V,
M, W | 48 LQFP,
64 LQFP | V | www.freescale.com/16BIT #### S12 and S12X Families (continued) | Device | Bus | Flash | RAM | Data | EEPROM | XGATE | MPU | ECC | FlexRa | CAN | SCI | SPI | I ² C | Analog (ADC) | PWM | Motor | SSD | ECT | Timer | PIT | LCD | KWU | EBI | Operat- | Temp. | Package | In | |----------|----------------|--------|-------|-------|--------|----------|-----|----------|----------|-----|-----|-----|------------------|------------------|-----------------|-------|-----|-----|------------------|------|-----|-----|-----|----------------|--------------------|--|-----------------| | | Fre-
quency | | | Flash | | | | | у | | | | | | | | | | | | | | | ing
Voltage | Range ¹ | Options | Produc-
tion | | S12G64 | 25 mhZ | 64 KB | 4 KB | - | 2 KB | _ | _ | V | | 1 | 2 | 2 | _ | 12-CH, 10-bit | 6-CH, 8-
bit | _ | _ | _ | 6-CH, 16-bit | - | - | 16 | | 3.13 to 5.5 | C, V,
M, W | 32 LQFP, 48
LQFP,
64 LQFP | V | | S12GA48 | 25 mhZ | 48 KB | 4 KB | _ | 1.5 KB | _ | _ | V | - | 1 | 2 | 2 | _ | 12-CH, 12-bit | 6-CH, 8-
bit | _ | _ | _ | 6-CH, 16-bit | _ | _ | 16 | _ | 3.13 to 5.5 | C, V,
M, W | 48 LQFP,
64 LQFP | V | | S12G48 | 25 mhZ | 48 KB | 4 KB | _ | 1.5 KB | _ | _ | V | _ | 1 | 2 | 2 | _ | 12-CH, 10-bit | 6-CH, 8-
bit | _ | _ | _ | 6-CH, 16-bit | - | | 16 | _ | 3.13 to 5.5 | C, V,
M, W | 32 LQFP, 48
LQFP,
64 LQFP | V | | S12GNA48 | 25 mhZ | 48 KB | 4 KB | _ | 1.5 KB | _ | _ | V | - | _ | 2 | 2 | _ | 12-CH, 12-bit | 6-CH, 8-
bit | _ | _ | _ | 6-CH, 16-bit | _ | _ | 16 | _ | 3.13 to 5.5 | C, V,
M, W | 48 LQFP,
64 LQFP | V | | S12GN48 | 25 mhZ | 48 KB | 4 KB | - | 1.5 KB | _ | _ | 1 | _ | _ | 2 | 2 | _ | 12-CH, 10-bit | 6-CH, 8-
bit | _ | _ | _ | 6-CH, 16-bit | _ | _ | 16 | _ | 3.13 to 5.5 | C, V,
M, W | 32 LQFP, 48
LQFP,
64 LQFP | V | | S12GNA32 | 25 mhZ | 32 KB | 2 KB | - | 1 KB | _ | _ | V | _ | _ | 1 | 1 | _ | 8-CH, 12-bit | 6-CH, 8-
bit | _ | _ | _ | 6-CH, 16-bit | _ | _ | 16 | _ | 3.13 to 5.5 | C, V,
M, W | 48 LQFP | 1 | | S12GN32 | 25 mhZ | 32 KB | 2 KB | _ | 1 KB | _ | _ | 1 | _ | _ | 1 | 1 | _ | 8-CH, 12-bit | 6-CH, 8-
bit | _ | _ | _ | 6-CH, 16-bit | _ | _ | 16 | _ | 3.13 to 5.5 | C, V,
M, W | 20 TSSOP,
32 LQFP,
48 LQFP,
48 QFN | 1 | | S12GNA16 | 25 mhZ | 16 KB | 1 KB | - | 512 B | _ | - | - | _ | _ | 1 | 1 | _ | 8-CH, 12-bit | 6-CH, 8-
bit | _ | _ | _ | 6-CH, 16-bit | _ | - | 16 | _ | 3.13 to 5.5 | C, V,
M, W | 48 LQFP | 1 | | S12GN16 | 25 mhZ | 16 KB | 1 KB | - | 512 B | _ | _ | V | _ | _ | 1 | 1 | _ | 8-CH, 10-bit | 6-CH, 8-
bit | - | _ | _ | 6-CH, 16-bit | - | _ | 16 | _ | 3.13 to 5.5 | C, V,
M, W | 20 TSSOP, 32
LQFP, 48
LQFP, 48 QFP | V | | S12G192 | 25 MHz | 192 KB | 11 KB | _ | 4 KB | _ | _ | 1 | _ | 1 | 3 | 3 | _ | 16-CH, 10-bit | 8-CH,
8-bit | _ | _ | _ | 8-CH,
16-bit | _ | _ | _ | _ | 3.13 to 5.5 | М | 20 TSSOP,
32 LQFP,
48 LQFP,
48 QFN,
64 LQFP,
100 LQFP | 1 | | S12G240 | 25 MHz | 240 KB | 11 KB | _ | 4 KB | _ | _ | 1 | _ | 1 | 3 | 3 | _ | 16-CH, 10-bit | 8-CH,
8-bit | _ | _ | _ | 8-CH,
16 -bit | | _ | _ | 1 | 3.13 to 5.5 | М | 20 TSSOP,
32 LQFP,
48 LQFP,
48 QFN,
64 LQFP,
100 LQFP | 1 | | S12GN32 | 25 MHz | 32 KB | 2 KB | _ | 1 KB | _ | _ | 1 | _ | _ | 1 | 1 | _ | 8-CH, 10-bit | 6-CH,
8-bit | _ | _ | _ | 6-CH,
16-bit | | _ | _ | 1 | 3.13 to 5.5 | М | 20 TSSOP,
32 LQFP,
48 LQFP,
48 QFN,
64 LQFP,
100 LQFP | 1 | | S12G128 | 25 MHz | 128 KB | 8 KB | _ | 4 KB | _ | _ | - | _ | 1 | 3 | 3 | _ | 12-CH, 10-bit | 8-CH,
8-bit | - | _ | _ | 8-CH,
16-bit | _ | _ | _ | _ | 3.13 to 5.5 | М | 48 LQFP,
64 LQFP,
100 LQFP | V | | S12G96 | 25 MHz | 96 KB | 8 KB | - | 3 KB | _ | _ | - | _ | 1 | 3 | 3 | _ | 12-CH, 10-bit | 8-CH,
8-bit | _ | _ | _ | 8-CH,
16-bit | - | _ | _ | _ | 3.13 to 5.5 | М | 48 LQFP,
64 LQFP,
100 LQFP | V | | S12XS256 | 40 MHz | 256 KB | 12 KB | 8 KB | _ | | | V | | 1 | 2 | 1 | _ | 16-CH,
12-bit | 8-CH,
8-bit | _ | _ | _ | 8-CH,
16-bit | 4-CH | _ | 18 | | 3.13 to 5.5 | C, V,
M, J | 64 LQFP,
80 QFP,
112 LQFP,
KGD | V | | S12XS128 | 40 MHz | 128 KB | 8 KB | 8 KB | _ | | | V | | 1 | 2 | 1 | _ | 16-CH,
12-bit | 8-CH,
8-bit | - | _ | _ | 8-CH,
16-bit | 4-CH | _ | 18 | | 3.13 to 5.5 | C, V,
M, J | 64 LQFP,
80 QFP,
112 LQFP,
KGD | V | | S12XS64 | 40 MHz | 64 KB | 4 KB | 4 KB | _ | | | 1 | | 1 | 2 | 1 | _ | 16-CH,
12-bit | 8-CH,
8-bit | _ | _ | _ | 8-CH,
16-bit | 4-CH | _ | 18 | | 3.13 to 5.5 | C, V,
M, J | 64 LQP,
80 QFP,
112 LQFP,
KGD | V | | S12XF512 | 50 MHz | 512 KB | 32 KB | - | 4KB | √ | | V | V | 1 | 2 | 2 | - | 16-CH,
12-bit | 6-CH,
15-bit | - | _ | _ | 8-CH,
16-bit | 4-CH | - | 11 | | 3.13 to 5.5 | C, V, M | 112 LQFP,
64 LQFP | V | | S12XF384 | 50 MHz | 384 KB | 24 KB | _ | 4KB | V | | V | 1 | 1 | 2 | 2 | _ | 16-CH,
12-bit | 6-CH,
15-bit | _ | _ | _ | 8-CH,
16-bit | 4-CH | _ | 11 | | 3.13 to 5.5 | C, V, M | 112 LQFP,
64 LQFP | 1 | | S12XF256 | 50 MHz | 256 KB | 20 KB | _ | 2 KB | V | | V | V | 1 | 2 | 2 | _ | 16-CH,
12-bit | 6-CH,
15-bit | _ | _ | _ | 8-CH,
16-bit | 4-CH | _ | 11 | | 3.13 to 5.5 | C, V, M | 112 LQFP,
64 LQFP | V | ### S12 and S12X Families (continued) | Device | Bus
Fre-
quency | Flash | RAM | Data
Flash | EEPROM | XGATE | MPU | ECC | FlexRa
y | CAN | SCI | SPI | I ² C | Analog (ADC) | PWM | Motor | SSD | ECT | Timer | PIT | LCD | KWU | EBI | Operat-
ing
Voltage | Temp.
Range ¹ | Package
Options | In
Produc-
tion | |-----------|-----------------------|--------|-------|---------------|--------|-------|-----|-----|-------------|-----|-----|-----|------------------|-------------------|------------------------------------|-------|---------|-----------------|---------------------|-----------------------|-----------|-----|-----|---------------------------|-----------------------------|-------------------------------|-----------------------| | S12XF128 | 50 MHz | 128 KB | 16 KB | _ | 2 KB | V | | V | V | 1 | 2 | 2 | _ | 16-CH,
12-bit | 6-CH,
15-bit | | _ | _ | 8-CH,
16 -bit | 4-CH | _ | 11 | | 3.13 to 5.5 | C, V, M | 112 LQFP,
64 LQFP | 1 | | S12XHZ512 | 40 MHz | 512 KB | 32 KB | _ | 4 KB | V | | | | 2 | 2 | 1 | 2 | 16-CH,
10-bit | 8-CH,
8-bit | 24/6 | 6 | 8-CH,
16-bit | | 4-CH | 32x4 | 8 | V | 4.5 to 5.5 | C, V, M | 112 LQFP,
144 LQFP | 1 | | S12XHZ384 | 40 MHz | 384 KB | 28 KB | 1 | 4 KB | V | | | | 2 | 2 | 1 | 2 | 16-CH,
10-bit | 8-CH,
8-bit | 24/6 | 6 | 8-CH,
16-bit | | 4-CH | 32x4 | 8 | V | 4.5 to 5.5 | C, V, M | 112 LQFP,
144 LQFP | 1 | | S12XHZ256 | 40 MHz | 256 KB | 16 KB | - | 4 KB | V | | | | 2 | 2 | 1 | 2 | 16-CH,
10-bit | 8-CH,
8-bit | 24/6 | 6 | 8-CH,
16-bit | _ | 4-CH | 32x4 | 8 | V | 4.5 to 5.5 | C, V, M | 112 LQFP,
144 LQFP | 1 | | S12XHY256 | 40 MHz | 256 KB | 12 KB | 8 KB | - | - | - | 1 | - | 2 | 2 | 1 | - | 12-ch.,
10-bit | 8-CH,
8-bit/
4-CH,
16-bit | 16/4 | 4 | - | - | 16-
CH.,
16-bit | 40 x
4 | 25 | - | 4.5 to 5.5 | C, V, M | 100 LQFP,
112 LQFP | V | | S12XHY128 | 40 MHz | 128 KB | 8KB | 8 KB | - | - | - | 1 | - | 2 | 2 | 1 | - | 12-ch.,
10-bit | 8-CH,
8-bit/
4-CH,
16-bit | 16/4 | 4 | - | - | 16-
CH.,
16-bit | 40 x
4 | 25 | - | 4.5 to 5.5 | C, V, M | 100 LQFP,
112 LQFP | V | | S12P128 | 32 MHz | 128 KB | 6 KB | 4 KB | _ | | | V | | 1 | 1 | 1 | _ | 10-CH,
12-bit | 6-CH,
8-bit | _ | _ | _ | 8-CH,
16 -bit | _ | _ | 12 | | 3.13 to 5.5 |
C, V, M | 80 QFP,
64 LQFP,
48 QFN | 1 | | S12P96 | 32 MHz | 96 KB | 6 KB | 4 KB | _ | | | V | | 1 | 1 | 1 | _ | 10-CH,
12-bit | 6-CH,
8-bit | _ | _ | _ | 8-CH,
16 -bit | _ | _ | 12 | | 3.13 to 5.5 | C, V, M | 80 QFP,
64 LQFP,
48 QFN | 1 | | S12P64 | 32 MHz | 64 KB | 4 KB | 4 KB | _ | | | V | | 1 | 1 | 1 | _ | 10-CH,
12-bit | 6-CH,
8-bit | _ | _ | _ | 8-CH,
16-bit | _ | _ | 12 | | 3.13 to 5.5 | C, V, M | 80 QFP,
64 LQFP,
48 QFN | 1 | | S12P32 | 32 MHz | 32 KB | 2 KB | 4 KB | _ | | | V | | 1 | 1 | 1 | _ | 10-CH,
12-bit | 6-CH,
8-bit | _ | _ | _ | 8-CH,
16-bit | _ | _ | 12 | | 3.13 to 5.5 | C, V, M | 80 QFP,
64 LQFP,
48 QFN | 1 | | S12HZ128 | 25 MHz | 128 KB | 6 KB | _ | 2 KB | | | | | 2 | 2 | 1 | 1 | 16-CH,
10-bit | 6-CH,
8-bit | 16/4 | 4 | _ | 8-CH,
8-bit | _ | 32x4 | 8 | | 4.5 to 5.5 | C, V, M | 112 LQFP | 1 | | S12HZ64 | 25 MHz | 64 KB | 4 KB | _ | 1 KB | | | | | 1 | 1 | 1 | _ | 8-CH,
10-bit | 4-CH,
8-bit | 16/4 | 4 | _ | 8-CH,
8-bit | _ | 24x4 | 8 | | 4.5 to 5.5 | C, V, M | 80 QFP,
112 LQFP | 1 | | S12HN64 | 25 MHz | 64 KB | 4 KB | _ | 1 KB | | | | | | 1 | 1 | _ | 8-CH,
10-bit | 4-CH,
8-bit | 16/4 | 4 | _ | 8-CH,
8-bit | _ | 24x4 | 8 | | 4.5 to 5.5 | C, V, M | 80 QFP,
112 LQFP | 1 | | S12HY64 | 32 MHz | 64 KB | 4 KB | 4 KB | _ | | | | | 1 | 1 | 1 | 1 | 8-CH,
10-bit | 8-CH,
8-bit | 16/4 | Support | _ | 8-CH+8-CH
16-bit | _ | 40x4 | 22 | | 3.13 to 5.5 | C, V, M | 64 LQFP,
100 LQFP | 1 | | S12HA64 | 32 MHz | 64 KB | 4 KB | 4 KB | _ | | | | | | 1 | 1 | 1 | 8-CH,
10-bit | 8-CH,
8-bit | 16/4 | Support | _ | 8-CH+8-CH
16-bit | _ | 40x4 | 22 | | 3.13 to 5.5 | C, V, M | 64 LQFP,
100 LQFP | √ | | S12HY48 | 32 MHz | 48 KB | 4 KB | 4 KB | _ | | | | | 1 | 1 | 1 | 1 | 8-CH,
10-bit | 8-CH,
8-bit | 16/4 | Support | _ | 8-CH+8-CH
16-bit | _ | 40x4 | 22 | | 3.13 to 5.5 | C, V, M | 64 LQFP,
100 LQFP | 1 | | S12HA48 | 32 MHz | 48 KB | 4 KB | 4 KB | _ | | | | | | 1 | 1 | 1 | 8-CH,
10-bit | 8-CH,
8-bit | 16/4 | Support | _ | 8-CH+8-CH
16-bit | _ | 40x4 | 22 | | 3.13 to 5.5 | C, V, M | 64 LQFP,
100 LQFP | 1 | | S12HY32 | 32 MHz | 32 KB | 2 KB | 4 KB | _ | | | | | 1 | 1 | 1 | 1 | 8-CH,
10-bit | 8-CH,
8-bit | 16/4 | Support | _ | 8-CH+8-CH
16-bit | _ | 40x4 | 22 | | 3.13 to 5.5 | C, V, M | 64 LQFP,
100 LQFP | 1 | | S12HA32 | 32 MHz | 32 KB | 2 KB | 4 KB | _ | | | | | | 1 | 1 | 1 | 8-CH,
10-bit | 8-CH,
8-bit | 16/4 | Support | _ | 8-CH+8-CH
16-bit | _ | 40x4 | 22 | | 3.13 to 5.5 | C, V, M | 64 LQFP,
100 LQFP | 1 | ^{1.} $C = -40 \, ^{\circ}\text{C}$ to $+85 \, ^{\circ}\text{C}$, $V = -40 \, ^{\circ}\text{C}$ to $+105 \, ^{\circ}\text{C}$, $M = -40 \, ^{\circ}\text{C}$ to $+125 \, ^{\circ}\text{C}$, $J = -40 \, ^{\circ}\text{C}$ to $+140 \, ^{\circ}\text{C}$, $W = -40 \, ^{\circ}\text{C}$ to $+150 \, ^{\circ}\text{C}$ ### S12 MagniV Mixed-signal MCUs | Device | Bus
Fre-
quency | Flash | RAM | EEPROM | ECC | CAN | CAN-
PHY | SCI | LIN-
PHY | SPI | I ² C | Ext. Ana-
log (ADC) | Int. Ana-
log (ADC) | PWM | Timer | LCD | KWU | Motor | High Volt-
age Input | Other
Analog | Vreg | Ext.
Supply | Operating
Voltage | Temp.
Range ¹ | Package
Options | In
Produc-
tion | |------------|-----------------------|-----------|-------|--------|-----|-----|-------------|-----|-------------|-----|------------------|------------------------|------------------------|---|---------------------------|------|-----|-----------------------------|--|-----------------------------------|------|-----------------|----------------------|-----------------------------|----------------------------|-----------------------| | S12ZVCA192 | 32 MHz | 192 KB | 12 KB | 2 KB | V | 1 | 1 | 2 | | 2 | 1 | 16-CH, 12-
bit | | 4+4-CH,
16-bit | 8+4-CH,
16-bit | _ | 34 | _ | 2-CH HVI,
Vsup Sense | 2-CH
ACMP,
DAC | 2 | 5.0 V/20
mA | | C, M, V,
W | 64 LQFP-
EP, 48
LQFP | | | S12ZVCA128 | 32 MHz | 128 KB | 12 KB | 2 KB | V | 1 | 1 | 2 | | 2 | 1 | 16-CH, 12-
bit | | 4+4-CH,
16-bit | 8+4-CH,
16-bit | _ | 34 | _ | 2-CH HVI,
Vsup Sense | 2-CH
ACMP,
DAC | 2 | 5.0 V/20
mA | | C, M, V,
W | 64 LQFP-
EP, 48
LQFP | | | S12ZVCA96 | 32 MHz | 96 KB | 12 KB | 2 KB | V | 1 | 1 | 2 | | 2 | 1 | 16-CH, 12-
bit | | 4+4-CH,
16-bit | 8+4-CH,
16-bit | _ | 34 | _ | 2-CH HVI,
Vsup Sense | 2-CH
ACMP,
DAC | 2 | 5.0 V/20
mA | | C, M, V,
W | 64 LQFP-
EP, 48
LQFP | | | S12ZVCA64 | 32 MHz | 64 KB | 4 KB | 1 KB | V | 1 | 1 | 2 | | 2 | 1 | 16-CH, 12-
bit | | 4+4-CH,
16-bit | 8+4-CH,
16-bit | _ | 34 | _ | 2-CH HVI,
Vsup Sense | 2-CH
ACMP,
DAC | 2 | 5.0 V/20
mA | | C, M, V,
W | 64 LQFP-
EP, 48
LQFP | | | S12ZVC192 | 32 MHz | 192 KB | 12 KB | 2 KB | V | 1 | 1 | 2 | | 2 | 1 | 16-CH, 10-
bit | | 4+4-CH,
16-bit | 8+4-CH,
16-bit | _ | 34 | _ | 2-CH HVI,
Vsup Sense | _ | 2 | 5.0 V/20
mA | | C, M, V,
W | 64 LQFP-
EP, 48
LQFP | | | S12ZVC128 | 32 MHz | 128 KB | 12 KB | 2 KB | V | 1 | 1 | 2 | | 2 | 1 | 16-CH, 10-
bit | | 4+4-CH,
16-bit | 8+4-CH,
16-bit | _ | 34 | _ | 2-CH HVI,
Vsup Sense | _ | 2 | 5.0 V/20
mA | | C, M, V,
W | 64 LQFP-
EP, 48
LQFP | | | S12ZVC96 | 32 MHz | 96 KB | 12 KB | 2 KB | V | 1 | 1 | 2 | - | 2 | 1 | 16-CH, 10-
bit | | 4+4-CH,
16-bit | 8+4-CH,
16-bit | _ | 34 | _ | 2-CH HVI,
Vsup Sense | _ | 2 | 5.0 V/20
mA | | C, M, V,
W | 64 LQFP-
EP, 48
LQFP | | | S12ZVC64 | 32 MHz | 64 KB | 4 KB | 1 KB | V | 1 | 1 | 2 | | 2 | 1 | 16-CH, 10-
bit | | 4+4-CH,
16-bit | 8+4-CH,
16-bit | _ | 34 | _ | 2-CH HVI,
Vsup Sense | _ | 2 | 5.0 V/20
mA | | C, M, V,
W | 64 LQFP-
EP, 48
LQFP | | | S12ZVL32 | 32 MHz | 32 KB | 1 KB | 128 B | ٧ | _ | _ | 2 | 1 | 1 | 1 | 10-CH, 10-
bit | | 8-CH, 8-
bit or 4-
CH, 16-
bit | 6+2-CH,
16-bit | - | 23 | _ | 1-CH HVI,
Vsup Sense | 3-CH
NGPIO
(5.0 V/25
mA) | 1 | 5.0 V/20
mA | | C, V, M | 48 LQFP,
32-LQFP | | | S12ZVL16 | 32 MHz | 16 KB | 1 KB | 128 B | V | _ | _ | 2 | 1 | 1 | 1 | 10-CH, 10-
bit | | 8-CH, 8-
bit or 4-
CH, 16-
bit | 6+2-CH,
16-bit | _ | 23 | _ | 1-CH HVI,
Vsup Sense | 3-CH
NGPIO
(5.0 V/25
mA) | 1 | 5.0 V/20
mA | | C, V, M | 48 LQFP,
32-LQFP | | | S12ZVL8 | 32 MHz | 8 KB | 1 KB | 128 B | 1 | _ | _ | 2 | 1 | 1 | 1 | 10-CH, 10-
bit | | 8-CH, 8-
bit or 4-
CH, 16-
bit | 6+2-CH,
16-bit | _ | 23 | _ | 1-CH HVI,
Vsup Sense | 3-CH
NGPIO
(5.0 V/25
mA) | 1 | 5.0 V/20
mA | | C, V, M | 48 LQFP,
32-LQFP | | | S12ZVLS32 | 32 MHz | 32 KB | 1 KB | 128 B | V | _ | _ | 2 | 1 | 1 | 1 | 10-CH, 10-
bit | | 8-CH, 8-
bit or 4-
CH, 16-
bit | 6+2-CH,
16-bit | _ | 23 | _ | 1-CH HVI,
Vsup Sense | 3-CH
NGPIO
(5.0 V/25
mA) | 1 | 5.0 V/20
mA | | C, V, M | 32 QFN | | | S12ZVLS16 | 32 MHz | 16 KB | 1 KB | 128 B | V | _ | _ | 2 | 1 | 1 | 1 | 10-CH, 10-
bit | | 8-CH, 8-
bit or 4-
CH, 16-
bit | 6+2-CH,
16-bit | _ | 23 | _ | 1-CH HVI,
Vsup Sense | 3-CH
NGPIO
(5.0 V/25
mA) | 1 | 5.0 V/20
mA | | C, V, M | 32 QFN | | | S12VR64 | 25 MHz | 64 KB | 2 KB | 512 B | V | _ | _ | 2 | 1 | 1 | - | 6-CH, 10-bit | 4-CH, 10-
bit | 4-CH, 8-
bit | 4-CH,
16 -bit | _ | 6 | 2-CH
Relay, LS
Driver | 4-CH HVI,
Vbat-Sense,
Vsup Sense | 2-CH,
HS
Driver | 2 | 5.0 V, 20
mA | 6.0 to 18 | C, V | 32 LQFP,
48 LQFP | V | | S12VR48 | 25 MHz | 48 KB | 2 KB | 512 B | V | _ | _ | 2 | 1 | 1 | - | 6-CH, 10-bit | 4-CH, 10-
bit | 4-CH, 8-
bit | 4-CH,
16 -bit | _ | 6 | 2-CH
Relay, LS
Driver | 4-CH HVI,
Vbat-Sense,
Vsup Sense | 2-CH,
HS
Driver | 2 | 5.0 V, 20
mA | 6.0 to 18 | C, V | 32 LQFP,
48 LQFP | V | | S12ZVH128 | 32 MHz | 128KB | 8 KB | 4 KB | ٧ | 1 | 1 | 2 | - | 1 | 1 | 8-CH, 10-bit | 8-CH, 10-
bit | 8-CH(8-
bit), 4-
CH(16-
bit) | Two 8-
CH x16-
bit | 4x40 | 24 | 4 Stepper | Vbat-Sense,
Vsup-Sense | _ | 2 | | 5.5 V to 18
V | C, V | 100 LQFP,
144 LQFP | V | | S12ZVH64 | 32 MHz | 64 KB | 4 KB | 4 KB | 1 | 1 | 1 | 2 | - | 1 | 1 | 8-CH, 10-bit | 8-CH, 10-
bit | 8-CH(8-
bit), 4-
CH(16-
bit) | Two 8-
CH x16-
bit | 4x40 | 24 | 4 Stepper | Vbat-Sense,
Vsup-Sense | _ | 2 | | 5.5 V to 18
V | C, V | 144 LQFP | V | | S12ZVHY64 | 32 MHz | 64 KB | 4 KB | 2 KB | V | 1 | _ | 2 | _ | 1 | 1 | 8-CH, 10-bit | bit | 8-CH(8-
bit), 4-
CH(16-
bit) | Two 8-
CH x16-
bit | 4x40 | 24 | 2 Stepper | Vbat-Sense,
Vsup-Sense | _ | 1 | | 5.5 V to 18
V | C, V | 100 LQFP,
144 LQFP | V | | S12ZVHY32 | 32 MHz | 32
MHz | 2 KB | 2 KB | V | 1 | _ | 2 | _ | 1 | 1 | 8-CH, 10-bit | 8-CH, 10-
bit | 8-CH (8-
bit), 4-
CH (16-
bit) | Two 8-
CH x 16-
bit | 4x40 | 24 | 2 Stepper | Vbat-Sense,
Vsup-Sense | _ | 1 | | 5.5 V to 18
V | C, V | 100 LQFP,
144 LQFP | V | | S12ZVHL64 | 32 MHz | 64 KB | 4 KB | 2 KB | ٧ | 1 | _ | 2 | 1 | 1 | 1 | 8-CH, 10-bit | 8-CH, 10-
bit | 8-CH (8-
bit), 4-
CH (16-
bit) | Two 8-
CH x 16-
bit | 4x40 | 24 | 2 Stepper | Vbat-Sense,
Vsup-Sense | _ | 1 | | 5.5 V to 18
V | C, V | 100 LQFP,
144 LQFP | V | ### S12 MagniV Mixed-signal MCUs (continued) | Device | Bus
Fre-
quency | Flash | RAM | EEPROM | ECC | CAN | CAN-
PHY | SCI | LIN-
PHY | SPI | I ² C | Ext. Ana-
log (ADC) | Int. Ana-
log (ADC) | PWM | Timer | LCD | KWU | Motor | High Volt-
age Input | Other
Analog | Vreg | Ext.
Supply | Operating
Voltage | Temp.
Range ¹ | Package
Options | In
Produc-
tion | |------------|-----------------------|--------|------|--------|----------|-----|-------------|-----|-------------|-----|------------------|------------------------|------------------------|---
---------------------------|------|-----|---------------|---------------------------|--|------|-----------------|----------------------|-----------------------------|-------------------------------|-----------------------| | S12ZVFP64 | 32 MHz | 64 KB | 4 KB | 2 KB | ٧ | 1 | _ | 2 | 1 | 1 | 1 | 8-CH, 10-bit | 8-CH, 10-
bit | 8-CH (8-
bit), 4-
CH (16-
bit) | Two 8-
CH x 16-
bit | 4x40 | 24 | _ | Vbat-Sense,
Vsup-Sense | _ | 1 | | 5.5 V to 18
V | C, V | 100 LQFP,
144 LQFP | V | | S12ZVML128 | 50 MHz | 128 KB | 8 KB | 512 B | ٧ | 1 | _ | 2 | 1 | 1 | _ | 4+5-CH, 12-
bit | 8-CH, 12-
bit | 6-CH,
15-bit | 4-CH, 16-
bit | _ | 6 | BLDC/
PMSM | Vsup-Sense | 6-CH
Gate
Drive
Unit | 2 | _ | 3.5 V to 20
V | V, M, W | 64 LQFP-
EP | V | | S12ZVMC128 | 50 MHz | 128 KB | 8 KB | 512 B | V | 1 | _ | 2 | - | 1 | _ | 4+5-CH, 12-
bit | 8-CH, 12-
bit | 6-CH,
15-bit | 4-CH, 16-
bit | _ | 6 | BLDC/
PMSM | Vsup-Sense | 6-CH
Gate
Drive
Unit | 2 | _ | 3.5 V to 20
V | V, M, W | 64 LQFP-
EP | V | | S12ZVML64 | 51 MHz | 64 KB | 4 KB | 512 B | ٧ | 1 | _ | 2 | 1 | 1 | _ | 4+5-CH, 12-
bit | 8-CH, 12-
bit | 6-CH,
15-bit | 4-CH, 16-
bit | _ | 6 | BLDC/
PMSM | Vsup-Sense | 6-CH
Gate
Drive
Unit | 1 | _ | 3.5 V to 20
V | V, M, W | 64 LQFP-
EP | V | | S12ZVMC64 | 52 MHz | 64 KB | 4 KB | 512 B | V | 1 | _ | 2 | - | 1 | - | 4+5-CH, 12-
bit | 8-CH, 12-
bit | 6-CH,
15-bit | 4-CH, 16-
bit | _ | 6 | BLDC/
PMSM | Vsup-Sense | 6-CH
Gate
Drive
Unit | 2 | _ | 3.5 V to 20
V | V, M, W | 64 LQFP-
EP | V | | S12ZVML32 | 50 MHz | 32 KB | 4 KB | 512 B | V | 1 | _ | 2 | 1 | 1 | | 4+5-CH, 12-
bit | 8-CH, 12-
bit | 6-CH,
15-bit | 4-CH, 16-
bit | | 6 | BLDC/
PMSM | Vsup-Sense | | 1 | 5.0 V, 20
mA | 3.5 V to 20
V | V, M, W | 64 LQFP-
EP | V | | S12ZVM32 | 50 MHz | 32 KB | 4 KB | 128 B | V | | _ | 2 | | 1 | | 4+5-CH, 12-
bit | 8-CH, 12-
bit | 6-CH,
15-bit | 4-CH, 16-
bit | | 6 | BLDC/
PMSM | Vsup-Sense | HV-PHY,
6-CH
Gate
Drive
Unit | 1 | 5.0 V, 20
mA | 3.5 V to 20
V | V, M, W | 64 LQFP-
EP, 48
LQFP-EP | | | S12ZVM31 | 50 MHz | 32 KB | 2 KB | | ٧ | | | 1 | 1 | 1 | | 4+5-CH, 12-
bit | 8-CH, 12-
bit | 6-CH,
15-bit | 4-CH, 16-
bit | | 6 | BLDC/
PMSM | Vsup-Sense | 6-CH
Gate
Drive
Unit | 1 | | 3.5 V to 20
V | V, M, W | 64 LQFP-
EP | | | S12ZVM16 | 50 MHz | 16 KB | 2 KB | 128 B | V | | | 2 | | 1 | | 4+5-CH, 12-
bit | 8-CH, 12-
bit | 6-CH,
15-bit | 4-CH, 16-
bit | | 6 | BLDC/
PMSM | Vsup-Sense | HV-PHY,
6-CH
Gate
Drive
Unit | 1 | 5.0 V, 20
mA | 3.5 V to 20
V | V, M, W | 64 LQFP-
EP, 48
LQFP-EP | | ^{1.} $C = -40 \,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$, $V = -40 \,^{\circ}\text{C}$ to +105 $^{\circ}\text{C}$, $M = -40 \,^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$, $J = -40 \,^{\circ}\text{C}$ to +140 $^{\circ}\text{C}$, $W = -40 \,^{\circ}\text{C}$ to +150 $^{\circ}\text{C}$ #### DIGITAL SIGNAL CONTROLLERS 56800E Core—The 56800E MCU+DSP core was architected specifically to provide users the ease of use of an MCU together with the performance of a DSP in a single core. 56F8300 High-Performance Flash Series—The MC56F8300 series of controllers combines the 56800E core with flash memory, motor control peripherals, and built-in safety features targeted specifically for automotive applications to provide 60 MIPS of performance over the full -40°C to 125°C temperature range. Memory—On-board memory includes program flash and RAM, data flash and RAM, and BootFlash with EEPROM emulation capability. The modified Harvard architecture enables users to perform up to three simultaneous memory accesses. Service—A full-range of services is offered for the controller devices including software, support, training, and internal and third-party development tools. For additional information, visit: Documentation, Tool, and Product Libraries: www.freescale.com #### 56F8xxx Family | Product | ROM
(KB) | RAM | Flash | Timer | Serial | GPIO
(pins) | A/D | PWM | Operating
Voltage
(V) | Operating
Frequency
(MHZ) | Temperature | Packaging | Additional Information | |---------|-------------|-----|-------|-------------|--|----------------|--------------------|----------|-----------------------------|---------------------------------|-------------|-----------|--| | 56F8013 | 0 | 4K | 16K | 4 x 16-bit | 1 SCI/LIN + 1 SPI + 1 I ² C | 26 | 1 x 4-CH
12-bit | 1 x 6-CH | 3.3 | 32 | C, M | | mcPWM with center alignment,
1 x 4 channel Quad Decoder | | 56F8355 | n/a | 20K | 280K | 16 x 16-bit | 2 SCI/LIN + 2 SPI + 1 CAN + 1 I ² C | 49 | 4 x 4-CH
12-bit | 2 x 6-CH | 3.3 | 60 | C, M | | mcPWM with center alignment, 2 x 4 channel Quad Decoder | #### KINETIS MCUS BASED ON ARM® TECHNOLOGY Kinetis MCU families for automotive are based on ARM® Cortex Technology and provide high scalability, cost-effective automotive-grade 32-bit portfolio for a wide range of automotive applications. Designers will be benefited from the granted third party support for ARM technology and they will maximize hardware and software reuse. For additional information, visit: Documentation, Tool, and Product Libraries www.freescale.com Automotive Home Page www.freescale.com/automotive #### Kinetis MCUs based on ARM® Technology | Device | Core
Platform | Program
Flash | RAM | EEPROM | SCI | SPI | CAN | I ² C | Other
Commu-
nications | Timer | Analog
(ADC) | КВІ | Additional
Features | Operating
Voltage | Temp
Range | Debug | Package
Options | In
Produc-
tion | |---------|------------------|------------------|-------|---------|-----|-----|-----|------------------|------------------------------|-----------------------|-----------------|-----------|--------------------------------|----------------------|---------------|-------|---------------------|-----------------------| | KEAZN8 | 48 MHz | 8 KB | 1 KB | Emulate | 1 | 1 | 0 | 1 | - | FTM, PIT, PWT,
RTC | 12-CH, 12-bit | 2x 8-bit | LVD, BME,
ACMP, PMC,
CRC | 2.7 to 5.5 | C, V, M | SWD | 16 TSSOP, 24
QFN | V | | KEAZN16 | 40 MHz | 16 KB | 2 KB | 256 B | 3 | 2 | 0 | 2 | - | FTM, PIT, RTC | 16-CH, 12-bit | 2x 8-bit | LVD, BME,
ACMP, PMC,
CRC | 2.7 to 5.5 | C, V, M | SWD | 32 LQFP, 64
LQFP | √ | | KEAZN32 | 40 MHz | 32 KB | 4 KB | 256 B | 3 | 1 | 0 | 2 | - | FTM, PIT, RTC | 16-CH, 12-bit | 2x 8-bit | LVD, BME,
ACMP, PMC,
CRC | 2.7 to 5.5 | C, V, M | SWD | 32 LQFP, 64
LQFP | √ | | KEAZN64 | 40 MHz | 64 KB | 4 KB | 256 B | 3 | 1 | 0 | 2 | - | FTM, PIT, RTC | 16-CH, 12-bit | 2x 8-bit | LVD, BME,
ACMP, PMC,
CRC | 2.7 to 5.5 | C, V, M | SWD | 32 LQFP, 64
LQFP | √ | | KEAZ64 | 48 MHz | 64 KB | 8 KB | Emulate | 3 | 1 | 1 | 2 | - | FTM, PIT, PWT,
RTC | 16-CH, 12-bit | 2x 32-bit | LVD, BME,
ACMP, PMC,
CRC | 2.7 to 5.5 | C, V, M | SWD | 64 LQFP, 80
LQFP | V | | KEAZ128 | 48 MHz | 128 KB | 16 KB | Emulate | 3 | 2 | 1 | 2 | - | FTM, PIT, PWT,
RTC | 16-CH, 12-bit | 2x 32-bit | LVD, BME,
ACMP, PMC,
CRC | 2.7 to 5.5 | C, V, M | SWD | 64 LQFP, 80
LQFP | V | #### MAC57DXXX 32-BIT ARM®-BASED MCUS The MAC57Dxxx family is the next-generation platform of devices specifically targeted at driver information systems (DIS) market using single and dual high resolution displays. Leveraging the highly successful MPC56xxS product families, our next generation product families powered by ARM® processors, coupled with 2D graphics accelerators, Head Up Display (HUD) warping engines, high resolution displays, integrated stepper motor drivers with patented stepper stall detect offering leading-edge performance and scalability for cost-effective applications. For additional information, visit: Documentation, Tool, and Product Libraries www.freescale.com Automotive Home Page www.freescale.com/automotive #### MAC57Dxxx 32-bit ARM®-Based MCUs | Device | Multi
Core
Plat-
form | Core
Fre-
quency | Pro-
gram
Flash | SRA
M | Graph-
ics
RAM | eDMA | EEPROM | Display
Resolu-
tion | Dis-
play
Inter-
faces | Seg-
ment
LCD | Graph-
ics
Acceler-
ator | Digital
Video
Input | Step-
per
Motor
Driver | I/O
Pro-
ces-
sor | MLB | UART
/LIN | | CA
N
(FD) | I ² C | Ether-
net | Sound
Genera-
tor | DRAM
Sup-
port | Flash
Sup-
port | | Temp
Range | | Secu-
rity | Func-
tional
Safety | Pack-
age
Optio
ns | In
Pro-
duc-
tion | |-----------|---|--|-----------------------|------------------|---|--------------|---|----------------------------|---|---------------------|-----------------------------------|---------------------------|---------------------------------|----------------------------|-----------|--------------|---|-----------------|------------------|----------------|-------------------------|---|----------------------------------|--------|---------------|----------------|---------------|---------------------------|-----------------------------|----------------------------| | MAC57D54H | ARM
Cortex
-A5,
ARM
Cortex
-M4,
ARM
Cortex
-M0+ | (A5)320
MHz,
(M4)160
MHz,
(M0+)80
MHz | 4 MB | 2 x
512
KB | 1.3 MB
(1 MB
Flex
ECC
option) | 2 x 16
Ch | Emulated
: 2 x (4 x
16 kB +
64 kB) | Up to 2 x
WVGA | 2 x
dRGB,
1 x
RSDS,
1 x
LVDS | 4x40 | OpenVG
1.1 | Yes | 6 | Yes | MLB
50 | 3 | 5 | 3 | 2 |
10/100
+AVB | Yes | 16-bit
SDR,
16/32-
bit
DDR2 | 2x
Dual
DDR
Quad
SPI | 3.3, 5 | V | JTAG,
Trace | CSE2 | | | | | MAC57D53M | ARM
Cortex
-A5,
ARM
Cortex
-M4,
ARM
Cortex
-M0+ | (A5)320
MHz,
(M4)160
MHz,
(M0+)80
MHz | 3 MB | 2 x
512
KB | 1.3 MB
(1 MB
Flex
ECC
option) | 2 x 16
Ch | Emulated
: 2 x (4 x
16 kB +
64 kB) | | 2 x
dRGB,
1 x
RSDS,
1 x
LVDS | 4x40 | OpenVG
1.1 | Yes | 6 | Yes | MLB
50 | З | 5 | 3 | 2 | 10/100
+AVB | Yes | 16-bit
SDR,
16/32-
bit
DDR2 | 2x
Dual
DDR
Quad
SPI | 3.3, 5 | V | JTAG,
Trace | CSE2 | | | | | MAC57D52L | ARM
Cortex
-A5,
ARM
Cortex
-M4,
ARM
Cortex
-M0+ | (A5)320
MHz,
(M4)160
MHz,
(M0+)80
MHz | 2 MB | 2 x
512
KB | 1.3 MB
(1 MB
Flex
ECC
option) | 2 x 16
Ch | Emulated
: 2 x (4 x
16 kB +
64 kB) | Up to 2 x
WVGA | 2 x
dRGB,
1 x
RSDS,
1 x
LVDS | 4x40 | OpenVG
1.1 | Yes | 6 | Yes | MLB
50 | 3 | 5 | 3 | 2 | 10/100
+AVB | Yes | 16-bit
SDR,
16/32-
bit
DDR2 | 2x
Dual
DDR
Quad
SPI | 3.3, 5 | V | JTAG,
Trace | CSE2 | | | | ### 64-BIT S32V MCUS BASED ON ARM® TECHNOLOGY The S32V200 family of processors are robust, efficient, flexible solutions for Automotive Advanced Driver Assistance Systems (ADAS) including applications like pedestrian detection, object detection, lane departure warning, smart head beam control and traffic sign recognition, amongst others. For additional information, visit: Documentation, Tool, and Product Libraries www.freescale.com Automotive Home Page www.freescale.com/automotive #### 64-bit S32V MCUs Based on ARM® Technology | Device | Core
Plat- | Core
Fre- | Cache | SRAM | DMA | Video
Acceler- | Graph-
ics | Image
Proces- | Cam-
era | Display
Interface | DRAM
Sup- | Flash
Sup- | USB
(2.0) | CAN | | MMC | | SPI | UART | Ether-
net | HDD
Inter- | | Sam-
ple | SPDIF
I/O | | | Oper-
ating | Temp.
Range | Pack-
age | In
Pro- | |---------|--------------------------------|--------------|---|------|------------|--|--------------------|---|---------------------------|---|--------------|--|--------------|-------------------|---|------|---|-----|------|-------------------------------|---------------|---|-------------|--------------|---|---|--|----------------|--|--------------| | | form | quency | | | | ator | Acceler-
ator | sor | Input | | port | port | | | | SDIO | | | | | face | | Rate | | | | Volt- | | Option | duc-
tion | | S32V234 | Quad
ARM
Cortex™
-A53 | 1 GHz | L1: 32
KB/ 32
KB I/D
per
core
L2: 256
KB
Unified
per
cluster | 4 MB | 32 -
CH | H.264
and
MJPEG
encode
and
decode | OpenGL
ES3.0 3D | Image
Signal
Processor
(ISP) +
Dual
APEX2-
CL Image
Cognition
Processor | MIPI-
CSI,
VIU-Lite | TFT, up to
150
MPixels/
sec (e.g.
1920
x1080 60
Hz) | and | Quad
Serial
Flash
Controll
er
(QuadS
PI) | X | 2 x
CAN-
FD | х | 1 | 3 | 4 | 2 | 1 GB
with
IEEE®
1588 | х | x | x | х | 2 | 1 | 1.0 V ±
5% for
digital
core
input
supply
voltage | V | 621
Flip
Chip
BGA,
17x17
mm | х | #### 32-BIT MCUS BASED ON POWER ARCHITECTURE® TECHNOLOGY Power Architecture is the world's leading architecture for automotive powertrain control, body electronics, safety and chassis, and instrument cluster applications. Our automotive qualified 32-bit processors built on Power Architecture technology deliver highly integrated single and multicore solutions for many automotive design needs. With 32-bit MCUs microcontrollers based on Power Architecture® Technology, you get a full range of performance and memory options so you can design scalable applications for more fuel-efficient, safer and secure automobiles.The 32-bit MCUs MPC56xx portfolio will continue to grow with devices that offer expanded sets of memory, connectivity and performance options. For additional information, visit: Documentation, Tool, and Product Libraries www.freescale.com Automotive Home Page www.freescale.com/automotive 32-Bit MCUS Based On Power Architecture® Technology Home Page www.freescale.com/32bitMCUS #### 32-bit MPC56xx and MPC57xx MCUs Built on Power Architecture® Technology | Device | Core
Plat-
form | Bus
Fre-
quency | Pro-
gram
Flash | SRAM | DMA | EEPROM | MPU/
MMU | СТИ | CSE/
HSM | SCI
(LIN-
Flex) | DSPI | CAN | I ² C | FlexRay™ | Ethernet
(100BaseT) | MLB | Other Peripher-
als | eTPU | eMIOS | Motor
Control
Timers | PIT | Analog
(ADC,
DAC) | Operat-
ing
Voltage | Temp.
Range | Debug | Package
Options | In
Pro-
duction | |----------|---|---|-----------------------|-----------------------|-------------|------------------------------------|--------------|-----|-------------|-----------------------|------|--------------------------|------------------|----------|------------------------|-----|---|--------|---------------------------|--|----------|--|------------------------------|------------------|---|--|-----------------------| | MPC5775K | Dual Z7
Process
or,
lockstep
Z4 | Z7
cores at
266
Mhz,
Z4
cores at
133
MHz | 4 MB
with
ECC | 1.5 MB
with
ECC | Safe
DMA | No | No | No | | 4 | 4 | 4 of
which
1 is FD | 3 | 128 msg | 1 | No | SPT (Signal
Processing Unit)
for Radar
Algorithms,
2xCross Trig
Unit, 3xeTimers,
2xSENT, Temp
Sensor | No | No | 2xPWM | No | 8xDelta
Sigma
@ 10
MHz;
4x12bit
SAR @
1Mz;
2M/s 8-
bit DAC | 3.3 V I/
O, 1.2 V
Core | -40 to
150 Tj | Nexus 3+ | 17x17
356
PBGA | | | MPC5774K | Dual Z7
Process
or,
lockstep
Z4 | Z7
cores at
266
Mhz,
Z4
cores at
133
MHz | 3 MB
with
ECC | 1.0 MB
with
ECC | Safe
DMA | No | No | No | | 4 | 4 | 4 of
which
1 is FD | 3 | 128 msg | 1 | No | SPT (Signal
Processing Unit)
for Radar
Algorithms,
2xCross Trig
Unit, 3xeTimers,
2xSENT, Temp
Sensor | No | No | 2xPWM | No | 8xDelta
Sigma
@ 10
MHz;
4x12bit
SAR @
1Mz;
2M/s 8-
bit DAC | 3.3 V I/
O, 1.2 V
Core | -40 to
150 Tj | Nexus 3+ | 17x17
356
PBGA | | | MPC5744P | 2 x
e200z4 | 180
MHz | 2.5 MB | 384 KB | 32-
CH | Emulated
in
Program
Flash | 32 Entry | 2 | | 2 | 4 | 3 | | V | | | | | | (3 x 6-
ch., E-
Timer),
(2 x 12-
ch,
PWM) | 4-
CH | Quad,
25-ch.
External
, 12-bit | 3.3 | C, V, M | Nexus 3+,
MDO and
Aurora
interface | 144
LQFP,
257
MAPBGA | | | MPC5746M | 4 x
e200z4 | 4 x 200
MHz | | 320 KB | 64-
CH | 288 KB | Yes, No | | | 5 | 7 | 3/1 | 1 | V | V | | | 120-CH | | | | 8 x
SAR, 6
x SD | 3.3, 5 | М | Nexus 3+,
Zipwire
Aurora,
JTAG | 176
LQFP-EP
292
MAPBGA | | | MPC5746G | Dual
e200z7 | 2x180
MHz | 6 MB | 384 KB | 96-
CH | 64 KB
Data
Flash | 32 entry | √ | | ß | 10 | 8 | 4 | 7 | V | 1 | | | Up to
96-CH,
16-bit | | 16 | Up to
32-CH,
12-bit,
48-CH,
10-bit | 3.3 V,
5.0 V | C, V, M | Nexus 3+ | 176
LQFP,
256
MAPBGA
324
MAPBGA | | | MPC5747C | e200x4,
e200x2 | 180
MHz,
80 MHz | 4 MB | 512 KB | 32-
CH | Emulated | 24-CH
MPU | V | | Up to
16 | 10 | 8 | 4 | V | V | | | | Up to
96-CH,
16-bit | | 16 | Up to
32-CH,
12-bit,
48-CH,
10-bi | 3.3 V,
5.0 V | C, V, M | Nexus 3+ | 176
LQFP,
256
MAPBGA
324
MAPBGA | | | MPC5746R | 3 x
e200z4 | 3 x 200
MHz | 4 MB | 320 KB | 64-
CH | 256 KB | 24 Entry | V | | 6 | 7 | 4 | ١ | V | V | | Zipwire, SENT | 64-CH | 32-CH | | 8 | 4 x
SAR, 3
x SD | 3.3, 5 | М | Nexus 3+,
JTAG | 176
LQFP-EP
252
MAPBGA | | | MPC5745R | e200z4x
3 | 3 x 200
MHz | 3 MB | 256 KB | 64-
CH | 256 KB | 24 entry | V | | 6 | 7 | 4 | | | V | | Zipwire, SENT | 64-CH | 32-CH | | 8 | 4 x
SAR, 3
x SD | 3.3 V,
5.0 V | М | Nexus 3+,
JTAG | 176
LQFP,
252
MAPBGA | | | Device | Core
Plat-
form | Bus
Fre-
quency | Pro-
gram
Flash | SRAM | DMA | EEPROM | | | CSE/
HSM | SCI
(LIN-
Flex) | | | | FlexRay™ | Ethernet
(100BaseT) | | Other Peripher-
als | eTPU | eMIOS | Motor
Control
Timers | PIT | Analog
(ADC,
DAC) | Operat-
ing
Voltage | Temp.
Range | Debug | Package
Options | In
Pro-
duction | |----------|----------------------------------|---------------------------------------|-----------------------|--------|--------------------------|------------------------------------|----------------------------|----------|-------------|-----------------------|----------------|-----|---|----------|------------------------|---|------------------------|-------------|---------------------------|----------------------------------|----------|--
---------------------------|----------------|---|---|-----------------------| | MPC5743R | e200z4x
2 | 2 x 200
MHz | 2 MB | 160 KB | 64-
CH | 256 KB | 24 entry | 1 | | 5 | 5 | 4 | | | V | | Zipwire, SENT | 64-CH | 32-CH | | 8 | 4 x
SAR, 3
x SD | 3.3 V,
5.0 V | М | Nexus 3+,
JTAG | 144
LQFP,
176 LQFP | | | MPC5777C | e200z7x
3 | 3 x 264
MHz | 8 MB | 512 KB | 2 x
64-
CH | Emulated
in
Program
Flash | 32 entry | | CSE | 5 | 5 | 6 | | | 1 | | Zipwire, SENT | 96-CH | 32-CH | | 4 | 2 x
eQADC,
3 x SD | 3.3 V,
5.0 V | М | Nexus 3+,
JTAG | 416
PBGA,
516
PBGA | | | MPC5747G | Dual
e200x4,
e200x2 | 180
MHz,
80 MH | 4 MB | 768 KB | 32-
CH | Emulated | 32-CH
MPU | V | | Up to
18 | 10 | 8 | 4 | 1 | 1 | √ | USB | | Up to
96-CH,
16-bit | | 16 | Up to
32-CH,
12-bit,
48-CH,
10-bi | 3.3 V,
5.0 V | C, V, M | Nexus 3+ | 176
LQFP,
256
MAPBGA
324
MAPBGA | | | MPC5748C | e200x4,
e200x2 | 180
MHz,
80 MH | 6 MB | 768 KB | 32-
CH | Emulated | 24-CH
MPU | ٧ | | Up to
16 | 10 | 8 | 4 | V | V | | | | Up to
96-CH,
16-bit | | 16 | Up to
32-CH,
12-bit,
48-CH,
10-bi | 3.3 V, 5
V | C, V, M | Nexus 3+ | 176
LQFP,
256
MAPBGA
324
MAPBGA | | | MPC5748G | Dual
e200x4,
e200x2 | 180
MHz,
80 MH | 6 MB | 768 KB | 32-
CH | Emulated | 32-CH
MPU | | | Up to
18 | 10 | 8 | 4 | V | ٧ | V | USB | | Up to
96-CH,
16-bit | | 16 | Up to
32-CH,
12-bit,
48-CH,
10-bi | 3.3V, 5V | C, V, M | Nexus 3+ | 176
LQFP,
256
MAPBGA
324
MAPBGA | | | MPC5777M | 3 x
e200z7
+ 1 x
e200z4 | 3 x 300
MHz +
1 x
200MH
z | 8 MB | 596 KB | 128-
CH | 8 x 64 KB | Yes, No | | | 6 | 8 | 4/1 | 2 | √ | V | | | 248-CH | | | | 12 x
SAR, 10
x SD | 3.3, 5 | М | Nexus 3+,
Zipwire
Aurora,
JTAG | 416
PBGA,
512
PBGA | | | MPC5676R | Dual
e200z7 | 2x180
MHz | 6 MB | 384 KB | 96-
CH | 64 KB
Data
Flash | 32 entry | | | 3 | 5 | 4 | | V | | | | 96-CH | Up to
32-CH,
16-bit | | | Up to
64-CH,
12-bit
12
xDEC
Filters | 3.3V, 5V | М | Nexus 3+ | 416 BGA,
516 BGA | | | MPC5674F | e200z7 | 150,
200,
264
MHz | 4 MB | 256 KB | 64-
CH +
32-
CH | Emulated
in
Program
Flash | MPU+
64
Entry
MMU | V | | 3 | 4
(MS
B) | 4 | | V | | | | 2x32-
CH | 32-CH | | | Quad
64-CH | 3.3 V,
5.0 V | М | Nexus 3+ | 324 BGA,
416 BGA,
516 BGA | ٧ | | MPC5673F | e200z7 | 150,
200,
264
MHz | 3 MB | 192 KB | 64-
CH +
32-
CH | Emulated
in
Program
Flash | MPU+
64
Entry
MMU | V | | 3 | 4
(MS
B) | 4 | | V | | | | 2x32-
CH | 32-CH | | | Quad
64-CH | 3.3 V, 5
V | М | Nexus 3+ | 324 BGA,
416 BGA,
516 BGA | V | | MPC5673K | Dual
e200z7 | 2x180
MHz | | 256 KB | 2x 32-
CH | 64 KB | V | 2 | | 3 | 2 | 4 | 2 | V | V | | | | | 3 x
PWM;
3 x
ETIME
R | 1 | 4 x 12-
bit,,34-
CH | 3.3 V,
1.2 V | | Nexus 3+ | 257
MAPBGA
473
MAPBGA | ٧ | | MPC5675K | Dual
e200z7
d | 45 MHz | 2 MB | 512 KB | 32-
CH | Emulated
in
Program
Flash | 64 entry | 2 | | 4 | 3 | 4 | 3 | opt. | V | | | | | | 4-
CH | 4-CH,
12-bit | 3.3 V, 5
V | M, V | Nexus 3+ | 473
MAPBGA
275
MAPBGA | V | | MPC5674K | Dual
e200z7
d | 180
MHz | 1.5 MB | 384 KB | 2 x
32-
CH | 64KB | V | 2 | | 4 | 3 | 4 | 3 | V | V | | | | | 3 x
PWM;
3 x
ETIME
R | 4-
CH | 4 x 12-
bit, 34-
CH | 3.3 V,
5.0 V | C, V, M | Nexus 3+ | 257
MAPBGA
473
MAPBGA | V | | MPC5668G | e200z6
+
e200z0 | 116
MHz | | 592KB | 16-
CH | 64 KB | | | | 6 | 4 | 6 | 4 | V | V | V | | | 16-CH,
24-bit | | 8-
CH | 36-CH,
10-bit | 3.3 V,
5.0 V | V | Nexus3on
z6 and
Nexus 2+ | 208
MAPBGA | V | | MPC5668E | e200z0
+
e200z0 | 116
MHz | 2 MB | 128 KB | 32-
CH | Emulated
in
Program
Flash | 16 entry | V | | 12 | 4 | 5 | 4 | | | | | | 32-CH,
16-bit | | 8-
CH | 64-CH,
10-bit | 3.3 V,
5.0 V | V, M | JTAG,
Nexus3
onz6 and
Nexus2+ | 208
MAPBG,
256
MAPBGA
only for
devt. | √ - | | MPC5604E | e200z0
h | 64 MHz | 512 KB | 96 KB | 16-
CH | 64 KB | yes | | | 2 | 3 | 1 | 3 | | V | | | | | 1 x E-
Timer | 1 | 8-CH,
10-bit | 3.0 V,
1.2 V | C, V, M | Nexus 2+ | 64 LQFP | V | | Device | Core
Plat-
form | Bus
Fre-
quency | Pro-
gram
Flash | SRAM | DMA | EEPROM | MPU/
MMU | СТИ | | | | | FlexRay™ | Ethernet
(100BaseT) | MLB | Other Peripher-
als | eTPU | eMIOS | Motor
Control
Timers | PIT | Analog
(ADC,
DAC) | Operat-
ing
Voltage | Temp.
Range | Debug | Package
Options | In
Pro-
duction | |----------|-----------------------|-----------------------|-----------------------|--------|-----------|------------------------------------|-------------|-----|-------------|---|---|---|----------|------------------------|-----|------------------------|-------|------------------|----------------------------------|-------------------|---|---------------------------|----------------|---|--|-----------------------| | MPC5634M | e200z3 | MHz | | 94 KB | | Emulated
in
Program
Flash | | | 2 | 2 | 2 | 0 | | | | | | 16-CH,
24-bit | | | Dual
34-CH,
12-bit | 5.0 V | | Nexus 2+
Wide trace
port in
Vertical
Calibratio
n System | 144
LQFP,
176
LQFP,
208
MAPBGA | ٧ | | MPC5633M | | | | | | Emulated
in
Program
Flash | | | 2 | 2 | 2 | 0 | | | | | | 16-CH,
24-bit | | | Dual
34-CH,
12-bit | 5.0 V | | Nexus 2+
Wide trace
port in
Vertical
Calibratio
n System | 176
LQFP,
208
MAPBGA
100
LQFP,
144
LQFP,
176
LQFP,
208
MAPBGA
100
LQFP,
144 LQFP | V | | MPC5632M | | | | | | Flash | | | | 2 | 2 | 0 | | | | | 32-CH | 24-bit | | | Dual
32-CH,
12-bit | 5.0 V | | Nexus 2+
Wide trace
port in
Vertical
Calibratio
n System
Nexus 3+ | | ٧ | | MPC5643L | | | | | | 64 KB
Data
Flash | 16 Entry | | 2 | 3 | 2 | 0 | 1 | | | | | | 46-Ch.
eTimer/
PWM/
STM | 4-
Ch. | Dual 16-
Ch., 12-
bit | | | | 257
MARRGA | √ | | MPC5646C | | | 3 MB | 256 KB | 16-
CH | 64 KB
Data
Flash | 16 Entry | 7 | 10 | 8 | 6 | 1 | V | V | | | | 64-CH,
16-bit | | Up
to 8-
CH | Up to
29-CH,
12-bit,
Up to
33-CH,
10-bit | 3.3 V,
5.0 V | | | 256 BGA,
208
LQFP,
176 LQFP | | | MPC5646B | | MHz | | 192 KB | СН | Data
Flash | 16 Entry | | 10 | 8 | 6 | 1 | V | | | | | 64-CH,
16-bit | | Up
to 8-
CH | Up to
29-CH,
12-bit,
Up to
33-CH,
10-bit | | | | 256 BGA,
208
LQFP,
176 LQFP | | | MPC5645C | | | 2 MB | 256 KB | 16-
CH | Data
Flash | 16 Entry | | 10 | 8 | 6 | 1 | V | V | | | | 64-CH,
16-bit | | Up
to 8-
CH | Up to
29-CH,
12-bit,
Up to
33-CH,
10-bit | | | | 256 BGA,
208
LQFP,
176 LQFP | | | MPC5645B | | MHz | | 160 KB | СН | Flash | 16 Entry | | 10 | 8 | 6 | 1 | V | | | | | 64-CH,
16-bit | | Up
to 8-
CH | Up to
29-CH,
12-bit,
Up to
33-CH, | | | | 256 BGA,
208
LQFP,
176 LQFP | | | MPC5644C | | | | | | Flash | 16 Entry | | 10 | 8 | 6 | 1 | V | V | | | | 64-CH,
16-bit | | Up
to 8-
CH | Up to
29-CH,
12-bit,
Up to
33-CH,
10-bit
Up to
29-CH,
12-bit, | | | | 256 BGA,
208
LQFP,
176 LQFP | | | MPC5644B | | | | | | Data
Flash | 16 Entry | | 10 | 8 | 6 | 1 | V | | | | | 64-CH,
16-bit | | Up
to 8-
CH | 33-CH, | | | | 256 BGA,
208
LQFP,
176 LQFP | | | MPC5607B | e200z0 | 64 MHz | 1.5 MB | 96 KB | 16-
CH | 64 KB
Data
Flash | 8 Entry | V | Up to
10 | 6 | 6 | 1 | | | | | | 64-CH,
16-bit | | | 16-CH,
10/12-
bit & up
to 32-
Ch., 10-
bit | 3.3 V,
5.0 V | C, V, M | Nexus 2+
(208MAP
BGA
Emul.
Only
Package)
JTAG | 100
LQFP,
144
LQFP,
176 LQFP | √
 | | Device | Core
Plat-
form | Bus
Fre-
quency | Pro-
gram
Flash | SRAM | DMA | EEPROM | | | SCI | | | | | Ethernet
(100BaseT) | Other Peripher-
als | eTPU | eMIOS | Motor
Control
Timers | | Analog
(ADC,
DAC) | Operat-
ing
Voltage | Temp.
Range | Debug | Package
Options | In
Pro-
duction | |----------|-----------------------|-----------------------|-----------------------|-------|-----------|------------------------|---------|----------|------------|------------|---|---|---|------------------------|------------------------|------|---------------------------|----------------------------|-------------------|---|---------------------------|----------------|--|--|-----------------------| | MPC5606B | e200z0 | | 1 MB | 80KB | 16-
CH | 64 KB
Data
Flash | 8 Entry | 1 | Up to
8 | Up to
6 | 6 | 1 | | | | | 64-CH,
16-bit | | | 16-CH,
10/12-
bit & up
to 32-
Ch., 10-
bit | 3.3 V,
5.0 V | C, V, M | Nexus 2+
(208MAP
BGA
Emul.
Only
Package)
JTAG | 100
LQFP,
144
LQFP,
176LQFP | ٧ | | MPC5605B | | | | | 16-
CH | 64 KB
Data
Flash | 8 Entry | | Up to
8 | Upto
6 | 6 | 1 | | | | | 64-CH,
16-bit | | | 16-CH,
10/12-
bit & up
to 32-
Ch., 10-
bit | | C, V, M | Nexus
2+
(208MAP
BGA
Emul.
Only
Package)
JTAG | 100
LQFP,
144
LQFP,
176 LQFP | 7 | | MPC5604B | e200z0 | 64 MHz | 512 KB | 32KB | | 64 KB
Data
Flash | 8 Entry | 7 | 4 | 3 | 3 | 1 | | | | | 56-CH,
16-bit | | up to
6-
CH | up to
36-CH,
10-bit | 3.3V,
5.0 V | C, V, M | Nexus 2+
(208MAP
BGA
Emul.
Only
Package)
JTAG | 100
LQFP,
144
LQFP, | 1 | | MPC5603B | e200z0 | 64 MHz | 384 KB | 28KB | | 64 KB
Data
Flash | | | 4 | 3 | 3 | 1 | | | | | 56-CH,
16-bit | | up to
6-
CH | up to
36-CH,
10-bit | 3.3 V,
5.0 V | C, V, M | Nexus 2+
(208 MAP
BGA
Emul.
Only
Package)
JTAG | 100
LQFP,
144 LQFP | 1 | | MPC5602B | e200z0 | 64 MHz | 256 KB | 24KB | | 64 KB
Data
Flash | 8 Entry | V | 3 | 3 | 2 | 1 | | | | | 56-CH,
16-bit | | up to
6-
CH | up to
36-CH,
10-bit | 3.3 V,
5.0 V | C, V, M | Nexus 2+
(208 MAP
BGA
Emul.
Only
Package)
JTAG | 100
LQFP,
144 LQFP | 1 | | MPC5604C | e200z0 | 64 MHz | 512 KB | 48 KB | | 64 KB
Data
Flash | 8 Entry | V | 4 | 3 | 6 | 1 | | | | | 28-CH,
16-bit | | 3-
CH | 28-CH,
10-bit | 3.3 V,
5.0 V | C, V, M | Nexus 2+
(208 MAP
BGA
Emul.
Only
Package)
JTAG | 100 LQFP | ٧ | | MPC5603C | e200z0 | 64 MHz | 384 KB | 40 KB | | 64 KB
Data
Flash | 8 Entry | V | 4 | 3 | 6 | 1 | | | | | 28-CH,
16-bit | | 3-
CH | 28-CH,
10-bit | 3.3 V,
5.0 V | C, V, M | Nexus 2+
(208 MAP
BGA
Emul.
Only
Package)
JTAG | 100 LQFP | V | | MPC5602C | e200z0 | 64 MHz | 256 KB | 32 KB | | 64 KB
Data
Flash | 8 Entry | V | 4 | 3 | 6 | 1 | | | | | 28-CH,
16-bit | | 3-
CH | 28-CH,
10-bit | 3.3 V,
5.0 V | C, V, M | Nexus 2+
(208 MAP
BGA
Emul.
Only
Package)
JTAG | 100 LQFP | 1 | | MPC5601D | e200z0 | 48 MHz | 128 KB | 12 KB | 16-
CH | 64 KB
Data
Flash | | V | 3 | 2 | 1 | | | | | | Up to
28-CH,
16-bit | | Up
to 4-
CH | Up to
33-CH,
12-bit | 3.3 V,
5.0 V | C, V, M | JTAG | 100
LQFP,
64 LQFP | V | | MPC5602D | e200z0 | 48 MHz | 256 KB | 16 KB | 16-
CH | 64 KB
Data
Flash | | 1 | 3 | 2 | 1 | | | | | | Up to
28-CH,
16-bit | | Up
to 4-
CH | Up to
33-CH,
12-bit | 3.3 V,
5.0 V | C, V, M | JTAG | 100
LQFP,
64 LQFP | V | | MPC5604P | e200z0 | 40/64
MHz | 512 KB | 40 KB | 16-
CH | 64 KB
Data
Flash | | 1 | 2 | 4 | 2 | 0 | V | | | | | 20-CH
eTimer/
PWM | 4-
CH | Dual
13-CH,
10-bit | 3.3 V,
5.0 V | М | Nexus 2+ | 100
LQFP,
144 LQFP | ٧ | | MPC5603P | | MHz | 384 KB | | 16-
CH | 64 KB
Data
Flash | | 1 | 2 | 4 | 2 | 0 | V | | | | | 20-CH
eTimer/
PWM | 4-
CH | Dual
13-CH,
10-bit | 3.3 V,
5.0 V | М | Nexus 2+ | 100
LQFP,
144 LQFP | V | | MPC5602P | e200z0 | 40/64
MHz | 256 KB | 20 KB | 16-
CH | 64 KB
Data
Flash | | V | 2 | 3 | 2 | 0 | | | | | | 14-CH
eTimer/
PWM | 4-
CH | 16-CH,
10-bit | 3.3 V,
5V | M | Nexus 1
(Emulatio
n with
MPC5604
P) | 64 LQFP,
100 LQFP | V | | Device | Core
Plat-
form | Bus
Fre-
quency | Pro-
gram
Flash | SRAM | DMA | EEPROM | MPU/
MMU | СТИ | CSE/
HSM | SCI
(LIN-
Flex) | DSPI | CAN | I ² C | FlexRay™ | Ethernet
(100BaseT) | MLB | Other Peripher-
als | eTPU | eMIOS | Motor
Control
Timers | PIT | Analog
(ADC,
DAC) | Operat-
ing
Voltage | Temp.
Range | Debug | Package
Options | In
Pro-
duction | |----------|-----------------------|----------------------------|-----------------------|---|-----------|------------------------------------|--|---|-------------|-----------------------|------------|-----|------------------|----------|-------------------------|-------------|------------------------|-------------|--------|--|---|-------------------------------|---------------------------|----------------|---|---|-----------------------| | MPC5601P | e200z0 | 40/64
MHz | 192 KB | 12 KB | 16-
CH | 64 KB
Data
Flash | | | | 1 | 1 | 1 | 0 | | | | | | | 6-CH
eTimer | 4-
CH | 11-CH,
10-bit | 3.3 V,
5V | М | Nexus 1
(Emulatio
n with
MPC5604
P) | 64 LQFP,
100 LQFP | V | | MPC5644A | e200z4 | 120,
132,
150
MHz | 4 MB | 192 KB | 64-
CH | Emulated
in
Program
Flash | 24 entry
MMU | | | 3 | 3(MS
B) | 3 | | V | | | | 32-CH | 24-bit | | 5-
CH | Dual 40-
CH, + 2
DECFIL | 3.3 V,
5V | М | Nexus3+
Vertical
Calibratio
n system | 176 QFP,
208
MAPBGA
, 324
MAPBGA | 1 | | MPC5643A | e200z4 | 120,
132,
150
MHz | 3 MB | 192 KB | 64-
CH | Emulated
in
Program
Flash | 24 entry
MMU | | | 3 | 3(MS
B) | 3 | | V | | | | 32-CH | 24-bit | | 5-
CH | Dual 40-
CH, + 2
DECFIL | 3.3 V,
5.0 V | М | Nexus3+
Vertical
Calibratio
n system | 176 QFP,
208
MAPBGA
, 324
MAPBGA | V | | MPC5642A | e200z4 | 120,
132,
150
MHz | 2 MB | 192 KB | 64-
CH | Emulated
in
Program
Flash | 24 entry
MMU | | | 3 | 3(MS
B) | 3 | | √ | | | | 32-CH | 24-bit | | 5-
CH | Dual 40-
CH, + 2
DECFIL | 3.3 V,
5.0 V | М | Nexus3+
Vertical
Calibratio
n system | 176 QFP,
208
MAPBGA
, 324
MAPBGA | 1 | | MPC5645S | e200z4
d | 125
MHz | 2 MB | 64 KB | 16-
CH | 4 x 16 KB | Up to 2
Display
Control
Unit
(DCU)
with
Parallel
Data
Interface
(PDI) | Up to
gaugy
es w/
Step
per
Stall
Dete
ct (S) | | Up to
6 | Upto
3 | 3 | 4 | | ٧ | Quad
SPI | | 16
Entry | | RTC, AF
ch, 32-bi
and S
Watche
Time | it PIT
/W
dog | Up to
20-CH,
10-bit | 3.3 V
and 5.0
V | C, V | Nexus 3+ | 176
LQFP,
208
LQFP,
416
TEPBGA | √ | | MPC5606S | e200z0
h | 64 MHz | 1 MB | 48 KB
+ 160
KB
Graphi
cs
RAM | 16-
CH | 4x16 KB | Display
Control
Unit
(DCU)
with
Parallel
Data
Interface
(PDI) | 6 gaug es w/
Step per Stall Dete ct (SSD) | | 2 | 3 | 2 | 4 | 40x4 | Yes
(using
eMIOS) | QuadS
PI | | 12
entry | 2-CH | Real Ti
Count
(RTC
Autonon
Period
Interrupt of
4-CH 32
PIT and
watcho | ter
b),
nous
dic
(API),
2-bit
S/W
dog | 16-CH,
10-bit | 3.3 V
and 5.0
V | C, V, M | Nexus 2+ | 144
LQFP,
176 LQFP | ٧ | | MPC5604S | e200z0
h | 64 MHz | 512 KB | 48 KB | 16-
CH | 4x16 KB | No | 6 gaug es w/
Step per Stall Dete ct (SSD) | | 2 | 2 | 2 | 2 | 64x6 | ٧ | | | 12
entry | 2-CH | Real Ti
Count
(RTC
Autonon
Period
Interrupt i
4-CH 33
PIT and
watcho | ter
c),
nous
dic
(API),
2-bit
S/W
dog | 16-CH,
10-bit | 3.3 V
and 5.0
V | C, V, M | Nexus 1 | 100
LQFP,
144 LQFP | V | | MPC5602S | e200z0
h | 64 MHz | 256 KB | 24 KB | 16-
CH | 4x16 KB | No | 6 gaug es w/
Step per Stall Dete ct (SSD) | | 2 | 3 | 1 | 2 | 64x6 | ٧ | | | 12
entry | 2-CH | Real Ti
Count
(RTC
Autonon
Perior
Interrupt
4-CH 3:
PIT and
watcho
time | ime
ter
;),
nous
dic
(API),
2-bit
S/W
dog | 16-CH,
10-bit | 3.3 V
and 5.0
V | C, V, M | Nexus 1 | 100
LQFP,
144 LQFP | ٧ | ^{1.} C = -40 °C to +85 °C, V = -40 °C to +105 °C, M = -40 °C to +125 °C, J = -40 °C to +140 °C, W = -40 °C to +150 °C #### Image Cognition Processors | Device | Primary
Core Plat-
form | Core
Fre-
quenc
y | Secondary
Core Plat-
form | SRAM | DM
A | Video
Accelera-
tor | Graphics
Accelera-
tor | Image
Proces-
sor | Camera
Input | Display
Inter-
face | DRAM
Support | Flash
Support | USB
2.0 | PCi
Express | I2S | I ² C | SPI | UART | Timers | ADC | 3.3 V
GPIO | - | Temp.
Range ¹ | Package
Options | In
Produc-
tion | |---------|-------------------------------|----------------------------|--------------------------------------|---------------|---------|---------------------------|------------------------------|-------------------------|-----------------|---------------------------|-----------------|------------------------------|-----------------------|----------------|-----|------------------|-----|------|--------|-----|---------------|---|-----------------------------|--------------------|-----------------------| | SCP2201 | ARM926 | 350
MHz | APEX - SMD
Array, Slave
ARM926 | 16 MB
DRAM | | | | | PDI | LCD/
WVGA | | NAND,
Serial
NOR flash | HS
OTG +
HS Phy | | 1 | 2 | 1 | 4 | | | 7 | 1 | С | 236 BGA | V | | SCP2207 | ARM926 | 350
MHz | APEX - SMD
Array, Slave
ARM926 | 64 MB
DRAM | | | | | PDI | LCD/
WVGA | | NAND,
Serial
NOR flash | HS
OTG +
HS Phy | | 1 | 2 | 1 | 4 | | | V | 1 | С | 236 BGA | V | ^{1.} C = -40 °C to +85 °C, V = -40 °C to +105 °C, M = -40 °C to +125 °C, J = -40 °C to +140 °C, W = -40 °C to +150 ° #### I.MX 32-BIT APPLICATIONS PROCESSORS The AEC-Q100 automotive-qualified i.MX applications processors are based on ARM9 and ARM11 CPU cores coupled with a wide rage of connectivity peripherals and hardware accelerators. Target automotive applications include infotainment, navigation, hands-free calling, telematics and fully configurable Instrumentation clusters. For additional information, visit: Freescale Semiconductor Documentation, Tool, and Product Libraries www.freescale.com Automotive Home Page www.freescale.com/automotive #### i.MX Applications
Processors | Device | Core
Platform | CPU
Fre-
quency | Cache | SRAM | DMA | Video
Accelera-
tor | Graphics
Accelerator | Image
Proces-
sor | Camera
Input | Display
Interface | DRAM
Support | Flash
Support | USB (2.0) | CAN | MLB | SD/
MMC
SDIO | I ² C | SPI | UART | Ethernet
(100BaseT
) | HDD
Inter-
face | SSI/
I2S | Sample
Rate
Con-
verter | SP
DIF
I/O | | 3.3V
GPIO | Voltage | Temp.
Range
1 | Package
Options | In
Produc-
tion | |---------|---|-----------------------|--|-----------|--------|--|---|---------------------------|---|--|--|---|---|-----|-------------------|--------------------|------------------|-----|------|---|-----------------------|-----------------|----------------------------------|------------------|---|--------------|---------------------------------|---------------------|-------------------------|-----------------------| | i.MX 6Q | Quad ARM
Cortex®-A9 | 852 MHz
1 GHz | L1: 32 KB/
32 KB I/D
L2: 512 KB
Unified | 256
KB | 32-Ch. | Multi-
Format
1080p
Encode
and
Decode
(only on
i.MX6Q6) | OpenVG 1.1
(3D Core)
OpenGLES
2.0, 3.0
Display
Composition | 7 | MIPI,
CCIR656 | Up to 4x
WXGA | x64
DDR3,
LV-
DDR3
LP-
DDR2 | x16
NOR
x8 SLC/
MLC
NAND | HS OTG+HS
PHY
HS Host+HS
PHY
x2 HSIC | 2 | 25/
50/
150 | 4 | 4 | 5 | 5 | 1 GB with
IEEE®
1588 | SATA | 3+
ESAI | Yes,
Asynchr
onous | Yes | 3 | 1 | 1.275 to
1.50 | O | 625 Flip
Chip
BGA | V | | i.MX 6D | Dual ARM
Cortex-A9 | 852 MHz
1 GHz | L1: 32 KB/
32 KB I/D
L2: 512 KB
Unified | 256
KB | 32-Ch. | Multi-
Format
1080p
Encode
and
Decode
(only on
i.MX6D6) | OpenVG 1.1
(3D Core)
OpenGLES
2.0, 3.0
Display
Composition | 7 | MIPI,
CCIR656 | Up to 4x
WXGA | x64
DDR3,
LV-
DDR3
LP-
DDR2 | x16
NOR
x8 SLC/
MLC
NAND | HS OTG+HS
PHY
HS Host+HS
PHY
x2 HSIC | 2 | 25/
50/
150 | 4 | 4 | 5 | 5 | 1 GB
with IEEE
1588 | SATA | 3+
ESAI | Yes,
Asynchr
onous | Yes | 3 | 1 | 1.275 to
1.50 | O | 625 Flip
Chip
BGA | V | | i.MX 6U | Dual ARM
Cortex-A9 | 800 MHz | L1: 32 KB/
32 KB I/D
L2: 512 KB
Unified | 128
KB | 32-Ch. | Multi-
Format
1080p
Encode
and
Decode
(only on
i.MX6U6) | OpenVG 1.1
(3D Core)
OpenGLES
2.0, 3.0
Display
Composition | on
i.MX6U6
only | MIPI,
CCIR656
(not in
i.MX
6U1) | Up to 2x
WXGA | x64
DDR3,
LV-
DDR3
LP-
DDR2 | x16
NOR
x8 SLC/
MLC
NAND | HS OTG+HS
PHY
HS Host+HS
PHY
x2 HSIC | 2 | 25/
50/
150 | 4 | 4 | 4 | 5 | 1 GB
with IEEE
1588 | | 3+
ESAI | Yes,
Asynchr
onous | Yes | 3 | 1 | 1.275 to
1.50 | O | 625 Flip
Chip
BGA | V | | i.MX 6S | ARM Cortex-
A9 | 800 MHz | L1: 32 KB/
32 KB I/D
L2: 512 KB
Unified | 128
KB | 32-Ch. | Multi-
Format
1080p
Encode
and
Decode | OpenVG 1.1
(3D Core)
OpenGLES
2.0, 3.0
Display
Composition
(not in i.MX
6S1) | √
(not in
i.MX 6S1) | MIPI,
CCIR656
(not in
i.MX
6S1) | Up to 2x
WXGA
(not in
i.MX 6S1) | x32
DDR3,
LV-
DDR3
LP-
DDR2 | x16
NOR
x8 SLC/
MLC
NAND | HS OTG+HS
PHY
HS Host+HS
PHY
x2 HSIC | 2 | 25/
50/
150 | 4 | 4 | 4 | 5 | 1 GB
with IEEE
1588 | | 3+
ESAI | Yes,
Asynchr
onous | Yes | 3 | 1 | 1.275 to
1.50 | O | 625 Flip
Chip
BGA | V | | i.MX53 | ARM
Cortex®-
A8 with VPU
and NEON | 800 MHz | L1: 32 KB/
32 KB I/D, L2:
256 KB Unified | 128
KB | 32-Ch. | HD720
Encode,
HD1080
Decode
(not in
i.MX534) | OpenVG
1.1,
OpenGL
ES2.0 | 1 | MIPI,
CCIR656 | UXGA,
Dual TFT | DDR2
DDR3
LP-
DDR2 | NOR,
SLC
NAND
MLC
NAND | HS OTG+HS
PHY
HS Host+FS
PHY
and 2x HS Host | 2 | 25/
50/ | 4 | 3 | 3 | 5 | 10/100
with IEEE
1588 | SATA,
PATA | 3+
ESAI
I | Yes,
Asynchr
onous | Yes | 3 | 7 | 0.95 to
1.1 | O | 529
MAP-
BGA | 1 | | i.MX35 | ARM1136™
with
Vector
Floating
Point | 532MHz | L1: 16 KB/
16 KB I/D, L2:
128 KB Unified | 128
KB | 32-Ch. | | OpenVG 1.1
(only in
i.MX356) | √
(not in
i.MX351) | MIPI,
CCIR656
(not in
i.MX351) | TFT up
to SVGA
(not in
i.MX351) | SDRAM,
mDDR,
DDR2 | NOR,
SLC
NAND
MLC
NAND | HS OTG+HS PHY HS Host+FS PHY or Ext. HS PHY | 2 | 25/
50/ | 3 | 3 | 2 | 3 | 10/100 | ATA-6 | 2+
ESAI | Yes,
Asynchr
onous | Yes | 3 | 7 | 1.22 to
1.47 | O | 400
MAP-
BGA | 1 | | i.MX28 | ARM926™ | 454 MHz | L1: 16 KB/
32 KB I/D | 128
KB | 32-Ch. | | | | | TFT up to
WVGA
(not in
i.MX281) | mDDR,
DDR2 | SLC
NAND,
MLC
NAND,
QSPI
Flash | HS OTG+HS
PHY
HS Host+HS
PHY
or Ext. HS PHY | 2 | | х3 | x2 | х3 | х6 | 10/100 x1
GMII or x2
RMII with
IEEE 1588 | | х3 | | Tx | 8 | 7 | Internall
y
Generat
ed | С | 289
MAP-
BGA | V | | I.MX25 | ARM926 | 400 MHz | L1: 16 KB/
16 KB I/D | 128
KB | 32 Ch | | | | MIPI,
CCIR656
(not in
i.MX251) | Up to
VGA (640
x 480)
(not in
i.MX251) | SDRAM,
mDDR,
DDR2 | NOR,
SLC
NAND
MLC
NAND | HS OTG+HS
PHY
HS Host+HS
PHY or
Ext. HS PHY | 2 | | 2 | 3 | 3 | 5 | 10/100 | ATA-6 | 2+
ESAI | | | 4 | 7 | 1.38 to
1.52 | С | 400
MAP-
BGA | V | ^{1.} C = -40 °C to +85 °C, V = -40 °C to +105 °C, M = -40 °C to +125 °C, J = -40 °C to +140 °C, W = -40 °C to +150 °C #### 32-bit Vybrid Controller Solutions | Device | Core
Platform | CPU
Fre-
quency | Cache | SRAM | DMA | Video
Accelera-
tor | Graphics
Accelera-
tor | Image
Proces-
sor | Camera
Input | Display
Interface | DRAM
Sup-
port | Flash
Support | USB (2.0) | CAN | MLB | SD/
MMC
SDIO | I ² C | SPI | UART | Ethernet
(100BaseT
) | HDD
Inter-
face | I2S | | SP F
DIF
I/O | .3V V
PIO | | | Package
Options | In
Produc-
tion | |-------------------|---------------------------|-----------------------|---|--------------------|-----|---------------------------|------------------------------|-------------------------|---|---|----------------------|--|------------------------|-----|-----|--------------------|------------------|-----|------|----------------------------|-----------------------|-------------------------|-----|--------------------|--------------|-------|---|------------------------|-----------------------| | Vybrid
SVFxxxR | ARM®
Cortex®-
A5/M4 | 400
MHz | L1: 32 KB/
32 KB I/D
L2: 512 KB
Up to 1.5 MB | Up to
1.5
MB | √. | | OpenVG
1.1 | | 18-bit
Composi
te
(4 to 1) +
VADC | 2 (Up to
WVGA) +
Segment
Display
(40 x 4) | DDR3
LP-
DDR2 | Dual
Quad
SPI,
NAND,
FlexBus | 2x USB OTG
HS + Phy | 50 | 7 | 2 | 4 | 4 | 6 | 2x 10/100 | | 4x
SAI
1x
ESAI | yes | yes | | 3.6 V | С | 176
LQFP
364 BGA | V | ^{1.} C = -40 °C to +85 °C, V = -40 °C to +105 °C, M = -40 °C to +125 °C, J = -40 °C to +140 °C, W = -40 °C to +150 °C | — Definitions — | |--| | | | ADC — Analog-to-Digital Converter | | ASK — Amplitude Shift Keying Modulation | | BDM — Background Debug Mode | | CAN — Controller Area Network | | CDIP — Ceramic Dual In-Line Package | | CLCC — Ceramic Leaded Chip Carrier | | COP — Computer Operating Properly (Watchdog Timer) | | CPU16 — 16-bit Central Processor Unit (HC11 Compatible) | | CPU32 — 32-bit Central Processor Unit (68000 Compatible) | | CTM — Configurable Timer Module (Various Hardware Options) | | DAB — Digital Audio Broadcasting | | DIP — Dual In-line Package | | DSPI — Deserial Peripheral Interface | | EBI — External Bus Interface | | ECT — Enhanced Capture Timer | | eDMA — Enhanced Direct Memory Access Controller | | eTPU — Enhanced Timing Processor Unit | | eMIOS — Enhanced Modular Input Output System | | eQADC — Enhanced Queued Analog-to-Digital Converter | | eSCI — Enhanced Serial Communications Interface | | FSK — Frequency Shift Keying Modulation | | GPT — General-Purpose Timer Module (4 IC, 5 OC, 2 PWM) | | HQFP — Heatsink Quad Flat Package | | HSOP — Heatsink Small Outline Package | | i — Input-Only Port Pins | | i/o — Bidirectional Input and Output Port Pins | | I ² C — Inter-Integrated Circuit | | IC — Input Capture | | ISPI — Interval Serial Peripheral Interface | | LQFP — Low-Profile Quad Flat Package (1.4mm thick) | | LVI — Low-Voltage Interrupt | | LVR — Low-Voltage Reset | | MCCI — Multi-Channel Communication Interface (2 SCI, SPI) | | MFT — Multi-Function Timer | | MUX — Multiplexed | | OC — Output Compare | | OOK — On-Off Keying | | PBGA — Plastic Ball Grid Array | | PDIP — Plastic Dual In-Line Package | | PEEP — Personality EEPROM | | PEP — Personality EPROM | | PLCC — Plastic Leaded Chip Carrier | | PLL — Phase-Locked Loop | | PQFP — Plastic Quad Flat Pack | | PWM — Pulse-Width Modulation | | QADC — Queued Analog-to-Digital Converter (10-bit) | | PQFN — Quad Flat No-Lead Package | | QFN —
Quad Flat No-Lead Package | | - | | QFP — Quad Flat Package | |---| | QSM — Queued Serial Module (SCI + QSPI) | | QSPI — Queued SPI | | RTI — Real-Time Interrupt | | SCI — Serial Communication Interface | | SCIE — Enhanced SCI | | SCIM — Single-Chip Integration Module | | SDIP — Shrink Dual In-line Package | | SIM — System Integration Module | | SIML — Low-Power System Integration Module | | SIOP — Simple Serial I/O Port | | SOICN — Small Outline Package Narrow Body | | SOICW — Small Outline Package Wide Body | | SPI — Serial Peripheral Interface | | ESPI — Enhanced SPI | | SRAM — Standby RAM Module | | SSOP — Shrink Small Outline Package | | TPU — Time Processor Unit (16 Programmable Channels) | | TPURAM — Standby RAM Module with TPU Emulation Capability | | , , | | TQFP — Thin Quad Flat Package (1.0mm thick) | | TSSOP — Thin Shrink Small Outline Package | | UART — Universal AsynchroNous Receiver/Transmitter | | UDFN— Ultra-thin dual flat no-lead package | | USB — Universal Serial Bus | | — Package Designators — | | B — Shrink DIP (70 mil spacing) | | DW — Small Outline (Wide-Body SOIC) | | DWB — Small Outline (Wide body SDIB) 0.65 pitch | | FA — 7 x 7 mm Quad Flat Pack (QFP) | | FB — 10 x 10 mm Quad Flat Pack (QFP) | | FC — QFN Quad Flat Pack | | FE — CQFP (windowed) — Samples Only | | FN — Plastic Quad (PLCC) | | | | FS — CLCC (windowed) — Samples Only | | FN — Plastic Quad (PLCC) FS — CLCC (windowed) — Samples Only FT — 28 x 28 mm Quad Flat Pack (QFP) | | FT — 28 x 28 mm Quad Flat Pack (QFP) | | FT — 28 x 28 mm Quad Flat Pack (QFP) FU — 14 x 14 mm Quad Flat Pack (QFP) | | FT — 28 x 28 mm Quad Flat Pack (QFP) | | FT — 28 x 28 mm Quad Flat Pack (QFP) FU — 14 x 14 mm Quad Flat Pack (QFP) FZ — CQFP (windowed) — Samples Only | | FT — 28 x 28 mm Quad Flat Pack (QFP) FU — 14 x 14 mm Quad Flat Pack (QFP) FZ — CQFP (windowed) — Samples Only K — Cerdip (windowed) — Samples Only | | FT — 28 x 28 mm Quad Flat Pack (QFP) FU — 14 x 14 mm Quad Flat Pack (QFP) FZ — CQFP (windowed) — Samples Only K — Cerdip (windowed) — Samples Only L — Ceramic Sidebraze | | FT — 28 x 28 mm Quad Flat Pack (QFP) FU — 14 x 14 mm Quad Flat Pack (QFP) FZ — CQFP (windowed) — Samples Only K — Cerdip (windowed) — Samples Only L — Ceramic Sidebraze P — Dual in-Line Plastic PNA — PQFN Power QFN | | FT — 28 x 28 mm Quad Flat Pack (QFP) FU — 14 x 14 mm Quad Flat Pack (QFP) FZ — CQFP (windowed) — Samples Only K — Cerdip (windowed) — Samples Only L — Ceramic Sidebraze P — Dual in-Line Plastic PNA — PQFN Power QFN PNB — PQFN Power QFN | | FT — 28 x 28 mm Quad Flat Pack (QFP) FU — 14 x 14 mm Quad Flat Pack (QFP) FZ — CQFP (windowed) — Samples Only K — Cerdip (windowed) — Samples Only L — Ceramic Sidebraze P — Dual in-Line Plastic PNA — PQFN Power QFN PNB — PQFN Power QFN PNC — PQFN Power QFN | | FT — 28 x 28 mm Quad Flat Pack (QFP) FU — 14 x 14 mm Quad Flat Pack (QFP) FZ — CQFP (windowed) — Samples Only K — Cerdip (windowed) — Samples Only L — Ceramic Sidebraze P — Dual in-Line Plastic PNA — PQFN Power QFN PNB — PQFN Power QFN PNC — PQFN Power QFN PU — 14 x 14 mm Low-Profile Quad Flat Pack (LQFP) | | FT — 28 x 28 mm Quad Flat Pack (QFP) FU — 14 x 14 mm Quad Flat Pack (QFP) FZ — CQFP (windowed) — Samples Only K — Cerdip (windowed) — Samples Only L — Ceramic Sidebraze P — Dual in-Line Plastic PNA — PQFN Power QFN PNB — PQFN Power QFN PNC — PQFN Power QFN PU — 14 x 14 mm Low-Profile Quad Flat Pack (LQFP) PV — 20 x 20 mm Low-Profile Quad Flat Pack (LQFP) | | FT — 28 x 28 mm Quad Flat Pack (QFP) FU — 14 x 14 mm Quad Flat Pack (QFP) FZ — CQFP (windowed) — Samples Only K — Cerdip (windowed) — Samples Only L — Ceramic Sidebraze P — Dual in-Line Plastic PNA — PQFN Power QFN PNB — PQFN Power QFN PNC — PQFN Power QFN PU — 14 x 14 mm Low-Profile Quad Flat Pack (LQFP) PV — 20 x 20 mm Low-Profile Quad Flat Pack (LQFP) S — Cerdip (windowed) — Samples Only | | FT — 28 x 28 mm Quad Flat Pack (QFP) FU — 14 x 14 mm Quad Flat Pack (QFP) FZ — CQFP (windowed) — Samples Only K — Cerdip (windowed) — Samples Only L — Ceramic Sidebraze P — Dual in-Line Plastic PNA — PQFN Power QFN PNB — PQFN Power QFN PNC — PQFN Power QFN PU — 14 x 14 mm Low-Profile Quad Flat Pack (LQFP) PV — 20 x 20 mm Low-Profile Quad Flat Pack (LQFP) S — Cerdip (windowed) — Samples Only TM — Mechatronics Connector | | FT — 28 x 28 mm Quad Flat Pack (QFP) FU — 14 x 14 mm Quad Flat Pack (QFP) FZ — CQFP (windowed) — Samples Only K — Cerdip (windowed) — Samples Only L — Ceramic Sidebraze P — Dual in-Line Plastic PNA — PQFN Power QFN PNB — PQFN Power QFN PNC — PQFN Power QFN PU — 14 x 14 mm Low-Profile Quad Flat Pack (LQFP) PV — 20 x 20 mm Low-Profile Quad Flat Pack (LQFP) S — Cerdip (windowed) — Samples Only | | — Pb-free — | |---| | AA — Pb-free 44 to 100 pin QFP | | AB — Pb-free 112 to 288 pin QFP | | AC — Pb-free 16 to 44 pin LQFP | | AE — Pb-free 48 to 64 pin LQFP | | AF — Pb-free 68 to 100 pin LQFP | | AG — Pb-free 108 to 144 pin LQFb | | AH — Pb-free 80 to 100 pin TQFP | | AI — Pb-free FQFP | | AJ — Pb-free CQFP | | AE — Pb-free 22 to 64 pin PDIP | | ED — Pb-free 6 yo 20 pin PDIP | | EE — Pb-free PSDIP | | EF — Pb-free 8 to 16 in SOIC | | EG — Pb-free 16 to 28 pin SOIC WIDE | | EH — Pb-free 132 pin PQFP | | EI — Pb-free PLCC | | EJ — Pb-free 8 to 24 pin TSSOP | | EK — Pb-free 32 to 54 pin SOIC WIDE | | EL — Pb-free 26 to 56 pin TSSOP | | EN — Pb-free 8 to 24 pin SSOP | | EO — Pb-free 26 to 56 pin SSOP | | EP — Pb-free QFN & MLF (Exposed Pad) | | ER — Pb-free CATV | | ES — Pb-free SENSOR | | ET — Pb-free RF (POWER CHIPS) | | EU — Pb-free MAC PAAC | | EV — Pb-free MFP (SOEIAJ) | | FC — Pb-free QFN & MLF (Regular) | | FE — Pb-free CerQuads | | VK — Pb-free MAPBGA <=1.3mm (THINMAP) <.7mm Pitch | | VL — Pb-free MAPBGA <=1.3mm (THINMAP) >.7mm Pitch | | VM — Pb-free MAPBGA 1.6mm > .7mm Pitch | | VN — Pb-free MAPBGA 1.6mm < .7mm Pitch | | VO — Pb-free MAPBGA 1.35mm < .7mm Pitch | | VP — Pb-free MAPBGA 1.36mm > .7mm Pitch | | VR — Pb-free PBGA | | VS — Pb-free FC-HiTCE LGA (without C5 sphere) | | VT — Pb-free FC PBGA | | VU — Pb-free FC-HiTCE | | VV — Pb-free TBGA | | VW — Pb-free HSOP | | VX — Pb-free SMT | | VY — Pb-free UNIBODY | # Product Numbering System for MC56F8300 Digital Signal Controllers ## **Product Numbering System for Pressure Sensors** # **Product Numbering System for ARM Devices** ## Product Numbering — Analog Auto and Power Management Devices Legacy product numbering is available in ANALOGPN on www.freescale.com ## 8-Bit Automotive Microcontroller Part Numbering System* ^{*}NOTE: Freescale's automotive part numbering system has evolved over time, so the decoder scheme shown above may not be relevant for the prior generations. ## 16-Bit Automotive Microcontroller Part Numbering System* *NOTE: Freescale's automotive part numbering system has evolved over time, so the decoder scheme shown above may not be relevant for the prior generations. #### 32-Bit Automotive Microcontroller Part Numbering System for MPC55xx Devices* ^{*}NOTE: Freescale's automotive part numbering system has evolved over time, so the decoder scheme shown above may not be relevant for the prior generations. ## 32-Bit Automotive Microcontroller Part Numbering System for MPC56xx Devices* ^{*}NOTE: Freescale's automotive part numbering system has evolved over time, so the decoder scheme shown above may not be relevant for the prior generations. #### How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. SMARTMOS is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2015 Freescale Semiconductor, Inc.